&P H B ML 912
(1999. 2. 4

Fog—F

FPGAs Complete Fault Diagnosis Based on
Binary Tree BIST Method

Abderrahim Doumart Toshiaki Ohmameudait Hideo Itoft

t Graduate School of Science and Technology, Chiba University
t Faculty of Engineering, Chiba University
1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

E-MAIL:{doumar,mame,ito}@icsd2.tj.chiba-u.ac.jp

Abstract This paper presents a new approach for test and diagnosis of faults in field programmable gate
arrays (FPGAs). The new method exploits the configurability and the programmability of SRAM-based FPGAs
and implements connections between the configurable logic blocks (CLBs) as a binary tree. The proposed scheme
is based on BIST (built-in-self-testing) method, and the implementation does not need any hardware overhead.
It is proved that this approach detects the multiple faults and locates single faults. The method is also able to
give the exact locations of one part of multiple faults, while it gives some possible locations for other multiple
faults. The simulation results indicate that the proposed method covers 100% of the modelled faults .

Key words FPGA, Testing, Configurability, Binary tree, BIST, Diagnosis.

1 Introduction

Field programmable gate array (FPGA) is widely
used since it can be programmed to implement any
logic circuit. Different architectures of FPGAs are pre-
sented by different manufacturers such as Xlinix {23]
or Altera [24]. The SRAM-based FPGA, which is the
most famous type, usually consists of configurable logic
blocks (CLBs) connected by interconnection network,
and programmable input outputs (1/0) blocks.

The test of an FPGAs chip has recently attracted
the interest of many researches [1] - [20]. The research
on the test of FPGA can be classified globaly in some
categories. The first category [21] , [22] takes advan-
tage of FPGA reprogrammabitity by treating a test
just as another application to be implemented in the
FPGA. Unfortunately it has low faults coverage rate.
While the second category [1] - [20] exploits the reg-
ular array structure of an FPGA by configuring it as
one or more iterative logic arrays. However it locates,
with difficulty, a single fault and can not directely lo-
cate multiple faults. Other cathegories test only one
part [from FPGA, for exemple interconnection network
[9] - [11].

In this paper a novel approach for testing and lo-
cating faults in SRAM-based FPGAs is proposed. It
detects and locates 100% of single faults and locates,
under some conditions, all multiple faults. In the cases
of non-satisfaction of these conditions this method in-
dicates some possible locations for multiple faults. IN
addition a majority of faults in interconnection network
can be detected.

In next section a background and the basic struc-
ture of BIST method are described. In section 3 the
binary tree architecture (new scheme) is presented and
discussed. Morover this section presents a general con-
cept, a diagnosis and the approach limitations. Simu-
lation results and evaluation of this method are studied
in section 4. Then a conclusion makes end to this study.

2 Background

In this section the model of FPGA which is under
test and the outline of the previous works of FPGA
testing [1] - [4] based on BIST method are presented.

2.1 Basic SRAM-FPGA Model

FPGA consists of an array of N x N CLBs which
can be programmed with configuration cells to gener-
ate logical functions (Figure 1). The set of all program-
ming bits establishes a configuration. Every CLB can
be connected to other CLBs using the interconnection
network. The final results can be transmitted to the
outside of FPGA using the inputs/outputs blocks.

Different FPGAs types are present in the market
with several usable modes. For example a configurable
logic blocks in some FPGAs (XC 4000, ORCA,- - -ect
) have a possibility to be programmed as RAM (RAM
mode). We focus on the general FPGA structure which
it CLBs implement either a normal logical function or
RAM.

2.2 BIST Method

Earlier work proposed the application of BIST for
FPGA [1]. Asshown in Figure 2, the set of all CLBs in
FPGAs was divided into 2 parts. The CLBs in the first
part are configured to implement a test pattern gen-
erator (TPG) and output response analyzers(ORAs),
while the CLBs in the second part are used as blocks
under test (BUTs). Since the two parts can not be
tested simultaneously, the method proposed in [1] has
at least two sessions for testing all CLBs in FPGAs :

I3 o
Blogk | +reeereeeee u

vo 70
Bloc} lock
. CLB |||+ ||| CLB | CLB CLB
. =
CLB CLB

Interconnection
network

. L cLejll. [[jcue .
10 "0
Bloc! loc)

10 70
[R —— Block

Figure 1: Basic structure of FPGAs.

1. Session 1: The CLBs of part 1 are under test and
CLBs of part 2 are used in the implementation of
TPG and ORAs.

2. Session 2: The CLBs of part 2 are under test and
CLBs of part 1 are used in the implementation of
TPG and ORAs.

For a complete fault coverage, every CLB must be
under test at least in one scssion. Since the ORAs and
TPG are implemented inside FPGA, the only cost of
the BIST method is the additional memory for storing
the data required to reconfigure the FPGA. This ar-
chitecture needs an extreme flexibility in an intercon-
nection network resources because every BUT is fully
connected from one side to TPG and from other side to
ORA and all BUTs are laid out within 2 dimensional
array.

In one solutions for this problem BUTs in part 2
are arranged, by cascading its in different rows[3],[4].
Every row is called ”iterative logic array (ILAf”‘ The
ILA connects the outputs of CLBs (except the last one
which is connected to the ORA) to the next CLB inputs
(except the first one witch is connected to the TPG) in
the ILA. Since the number of inputs is smaller than the
number of outputs, the authors of [3], [4] used helpers
to offer for CLBs in ILAs the necessary inputs as shown
in (Figure 3). The scheme proposed by C.Stroud im-
plements each helper at one CLB. The exact helper’s
functions depend on the FPGAs type and modes which
are defined by FPGAs data books.

3 Notations and Definitions
LUTs : Look-up tables

Nora : The number of ORAs implemented in FPGA
in each session.

Npyr(i) : The number of CLBs tested in FPGA in
the session 1.

Nrpc : The number of CLBs needed to implement
TPG in each session.

P: The number of levels in binary tree. For example
P=4 in Figure 10.

Nyjo @ The number of input/output blocks in FPGA..

Figure 2: BIST scheme for FPGA.

Control {configured as R/W in RAM mode)

- CLB A
From the -—;vb N P> To the next
precedent Conflg:rEd \ BUT
BUT
o BUT
CLB
configured
as
\\ o
From the %t HELPER To the next
precedent \ helper
Helper

Figure 3: One BUT connection from ILA BIST struc-
ture.

Nygrper : The number of helpers needed in each

session.

Npyrr : The number of BUTs at the last level in the
binary-tree.

N: The number of CLB rows in FPGA.
M: The number of CLB coulombs in FPGA.

@: The number of CLBs needed to implement one
ORA.

Npyr(i) : The number of BUTs used at session (i).

RT'S(7) : The response of test sequence i. In Figure
11 RT'S(i) is the value of RTS during the test
sequence 2.

Complete binary tree : A binary tree is called com-
plete when every BUT (except the BUTs in the
last level in the tree) is connected to two BUTs.
In the other case the tree is called incomplete.

Phase : A phase consists of programming an FPGA
with one configuration followed by test vector ap-
plication. The time reserved to implement one

phase is very large than the time required by the
application of the test sequence because all con-
figuration cells must be loaded from the configu-
ration program.

Subcircuit : A CLB is divided into some parts (subcir-
cuits) {SUB; ---SUB,}, for example every mul-
tiplexer, flip flop and LUT are considered as sub-
circuits. CLB is constructed by the union of all

subcircuits (CLB = |J;Z} SUB;).

C-testable : An FPGA is C-testable if the test-
ing time is independent of the number of CLBs
[15},[16],[17]. In particular if the CLBs are con-
nected within binary tree it is independent of the
tree size.

4 Binary Tree New Architecture

An illustration example of the basic concept is pre-
sented first, the fault model assumed in this approach
is defined next, the binary tree architecture presenta-
tion follows, and the test conditions are outlined at the
end of this section.

4.1 Preliminaries

For simplicity of illustration, let’s consider an exam-
ple of 6 BUTSs. Testing the CLBs one by one will take
certainly a long time. While connecting the CLBs in
an array(Figure 4) can resolve this problem, however
it is not able to locate faults, because CLBs (except the
last one) outputs are not directly observable. If we de-
cide to put all CLBs outputs observable, CLBs must be
connected as shown in Figure 5, but every CLB needs
one I1/O block at FPGA. This condition 1s not always
satisfied.

Input 1 2 . 6 output

Figure 4: Example of 6 CLBs in an array.

| | l

1 P 6

output output output

Figure 5: Example of 6 CLBs with a direct observabil-
ity.

Connecting CLBs as a binary tree as shown in Figure
6 reduces the number of I/Os blocks needed to the half
(in this example 6 CLBs are presented, 4 CLBs are
directly observed while 2 CLBs doesn’t need the direct
observability).

Unfortunately the number of CLB inputs and out-
puts are different. In addition each of CLBS3,
CLB4, CLB5 and CLB6 needs some suplementary in-
puts which can be driven from other CLBs configured
as helpers as shown in Figure 7. The helper function
in this Figure is a simple multiplexer and the missing
inputs signals for CLB3, CLB4, CLB5 and CLB6 are
driven from the helper input to its output.

Input

1 2
3 4 5
oucput output outpue output

Figure 6: Example of 6 CLBs in binary tree.

Input

I |

Helper 1 2 Helper
3 4 5 6
¥
output Output Output outpue

Figure 7: Example of 6 CLBs in binary tree with
helpers.

4.2 Fault Model

The basic internal architecture of CLB, shown in Fig-
ure 8, is built by three components: lookup tables, mul-
tiplexers and D-flip flops. The LUT implements either
a logical function with k1 inputs or RAM. This model
generalizes all conventional CLBs.

LUTs MULTIPLEXERS
k1 OR 1<}
k4
AND -
RAM
FLIP FLOPS
—_—

Figure 8: Basic internal CLB architecture.

A fault can affect any of these components. And it
is modelled as follows:

For an LUT, a stuck at fault is assumed in the LUT’s
inputs and outputs. A fault can also affect any
memory cell sothat the right data can not be seen
at the LUT’s output. The decoder which makes it
incapable to generate the right addresses.

For a multiplexer, a functional fault model is assumed.
The functional model is enough because the aim is
to be sure that multiplexer realizes the right func-
tions. The stuck at fault model is not assumed in
this part because the internal structure of multi-
plexers varies from one company to another.

For a D-flip-flop, a functional fault model is assumed.

Table 1: Test Sessions Proposed by the Binary Tree
Method .

Setl Set2 Set3
Session 1 BUTs TPG,O0RAs | OR Helpers
Session 2 | TPG,0RAs Helpers BUTs
Session 3 Helpers BUTs TPG,0RAs

A fault can make it incapable to storage data or
unable to set or reset.

For the CLB input connections or the CLB output
connections or any connection between multiplex-
ers and multiplexers or multiplexers and flip/flops
a fault is assumed to be “stuck at”.

The proposed method detects all faults in CLBs.
However, even if a big part of interconnection network
faults can be detected, this possibility is not cosidered.
1/Os blocks of FPGAs are assumed fault free. This
condition is normal since the I/Os blocks can be sepa-
rately tested with boundary scan [23] .

4.3 Test Architecture

This study proposes a new testing implementation
of FPGAs based on binary tree. As shown in Figure
9, CLBs are divided into three sets: The first set is
used as BUTs and it is connected as binary tree while
the second set is used to construct TPGs and ORAs,
and the third set is used to implement helpers. Each
BUT in the tree needs one helper to provide it with
the necessary inputs. Thus the number of CLBs im-
plementing helpers is equal to a number of CLBs in
the tree. The helper function can be defined at each
mode. For example for RAM mode the helpers can be
implemented as multiplexers. For more clearness, the
helpers are not represented in Figure 10. Every BUT
have different name in this Figure. For exemple the
BUT connected to BUT “A” and BUT “B” is named
“AB”. This notation will serve in locating BUTs in the
tree.

Set | Set2
T CLBs under test
P (BUTs)
G connected as

Binary tree
o H
R CLBs
A configured as
s Helpers

Figure 9: The Basic architecture for the Binary Tree
Method.

The proposed test needs 3 sessions (Table 1), in each
session one set will be tested :

Following the fact that in this test all BUTs in the
tree have the same inputs value(some inputs are con-
ducted from TPG block to the designed CLB across
helpers and other part are conducted by CLBs itselfs),
in absence of faults, the outputs must be the same. An
ORA will have two inputs series (Figure 11): ‘The first

O sur
B opa

[Joi234567 [1 soaBCDEF

F

[el
From
7P6
A,

7

[]
From
tea [0]

A

TO FPGAs INPUT /

:

OUTPUTs

Figure 10: Binary tree structure.

inputs series represent BUT “I” outputs and the second
inputs series represent BUT “” outputs. Each input
signal in series 1 will be compared with the correspond-
ing one in the second series inputs and the final result
is given by the signal RTS. If for one test vector, an
ORA output is equal to “1” , it will not change for all
the following test vectors . A comparator can be either
an analyzer or a comparator-based analyzer. But in
general case its architecture depends on the number of
inputs and the number of outputs of CLBs. The condi-

OUTPUTS < OUTPUT
coming = ping °
from CLB i M OR OF ORA
(SERIES 1) }1: RTS, e
R

m pins A
oUTPUTS 5
coming R
from CLB j
(SERIES 2)

Figure 11: Basic ORA structure.

tion of C-testability are fully satisfied, since all BUTs
in the tree have the same input in absence of faults.
4.4 Test Conditions

Since the number of input/outputs pins in FPGA is
limited and the testing time must be the as short as
possible, some conditions must be satisfied.

The test is completely accomplished at three ses-
sions, thus the following expression must be satisfied.

Npur(1) + Npur(2) + Npur(3) > N x M. (1)
Let’s take :
Npur = Min(Npur(1), Npur(2), Npur(3)). (2)

In this case, the following expression is sufficient to
assure that all CLBs are tested in three session.

3x Npur > N x M. (3)

On the other hand the ORAs outputs must be ob-
served from outside FPGA. Therefore, each ORA out-
put should be connected to one I/O block. Conse-
quently the number of FPGAs I/O blocks is larger than
that of the ORAs :

Nrjo > Nora. (4)

' Referring to the binary tree structure, easily the fol-
lowing deduction is done :

Npurr = 27, (5)
and
Nora = Npyrr + 1. (8)
Consequently
Nyjo>2P +1.)

Since the ORAs, TPGs, helpers and BUTs are im-
plemented on the same FPGA, the following expression
holds :

MxN > QxNora+Npur+Nugper+ Nreg. (8)

The structure of binary tree shows easily that the
number of BUTs in each session is:

Npyy = 2F+t — 2. (9)

In addition the number helpers is equal to a number of
BUTs:

Nugrper = Npur. (10)

Since the TPGs and ORAs implementations depend
on a BUT structure, a general expression of Nppg and
Noga can not be expressed using only the parameter
P

The above discussion can be summarized in three
conditions:

Logy(N1jo —1) > P. (11)
P > Loga(N x M/3+2) 1. (12)
Loga((N x M — Q — Nppg +4)/(Q +4)) > P. (13)

In the most cases, the three conditions are satisfied by
adequate choice of P. But if theses conditions are not
satisfied simultaneously, the ORAs must be designed
in new structure which is not expensive in term of
CLBs, or add some BUTs in the binary-tree. For ex-
ample in Figure 10, some BUTs can be added between
BUT”EF” and BUT “F”. However, this solution will
make a confusion between BUTs during a fault local-
ization.

If the binary tree is not complete the same kind of
study can be done. But the approach performance will
be less in term of localization.

5 Test and Diagnosis of Faults

In this section a single fault detection and localiza-
tion is discussed first. Then the disscution of multiple
faults detection and localization follows. The aim of
this section is detecting and locating faulty CLBs. Un-
fortunately the localization of faulty subcircuits is not
considered.

5.1 Single Fault Detection and Localiza-
tion

Let’s take Pcrp the number of phases to test ex-
austively the CLB. If a fault happens at one CLB, the
concerned CLB will be declared faulty and then it will
be detected and located by the proposed diagnosis af-
ter Pcrp phases. A single fault detection is assured,
since all BUTs outputs (except the CLBs of the last
stage which are connected to the ORAs inputs) are
connected to two next BUTs. For example, if BUT
“AB” (Figure 10) is faulty, this error will be trans-
meted to the following BUTs “A” and “B” and it will
be immediately seen at the outputs “x” and “y”.

Every single fault generates one different ORAs out-
put vector. Therefore a single fault localization is as-
sured.

5.2 Multiple Fault Detection and Local-
ization

A multiple faults are also detected for the same rea-

sons. More difficult task is the localization of multiple

faults, because logically, 2(2°*'=2) (ifferent multiple

. faults can happen, while only 2(27+1) different outputs
are generated by ORAs. Therefore the maximum mul-

tiple faults which can be located is 207+ However
this number is smaller in practice.

This method consist of testing every subcircuit with
one test sequence specially built for it. Then two dif-
ferent subciruits have two different test sequences.

Assumption 1 Multiple faulty BUTs can happen
only if the faulty subcircuits in the faulty BUTs are
different.

Theorem 1 With the assumption 1, an ORAs out-
puts of any multiple faults is only “OR” of the corre-
sponding ORAs outputs of single faults.

Proof : Since multiple faults happen at differ-
ent subcircuits, a test pattern for theses subcircuits
are different. Let’s B={SUB,---,SUB,} be the set
of subcircuits in one CLB and TS={T'S;,---T'S, } a
set of corresponding test sequences. This test con-
sist of an application sequentially from T'S; to T'S,.
For every test sequence 1, at each ORA one RI'S(7)
is decided. Following the ORAs structure (Figure 11),
ORA output for a testsequence(i + 1) = (RTS(i +
1))OR(RTS(i)), where the first ORA output for a
testsequence(0) = 0 (initialization). Concequentely :

ORA output = (RTS(1)) OR (RTS(2)) OR --- OR
(RTS(n)),

where “ORA output” is an ORA output after an
application of all test sequences.

Obviously, if the number of subcircuits is smaller
than the number of multiple faults, at Jeast two BUTs
have the same faulty subcircuits, therefore faults can
be recovered. The number of subcircuits must be larger
than multiple faults.

With the information concerning the length of multi-
ple faults (number of faulty CLBs) and the stage which
encompass faults, we can in most cases locate precisely
faults, but without this information, for each detec-
tion of multiple faults one number of fault possibilities
are considered : For example in Figure 6 if CLB6 and
CLB2 are faulty, we have 4 cases possible considered
by a fault localization :

Possibility 1 : CLB2 and CLB6 are faulty.
Possibility 2 : CLB5 and CLB6 are faulty.

Possibility 3 : CLB2 and CLB5 and CLB6 are faulty.
Possibility 4 : CLB2 and CLB5 are faulty.

Assumption 2 Multiple faulty CLBs can happen
only if the fauty CLBs have the same faulty subcircuits.
Consequentely the faults are concerning the same sub-
circuits in these CLBs.

Theorem 2 With the assumption 2, the ORAs out-
puts of any multiple faults in one stage is only "XOR”
of corresponding outputs of singles faults.

Proof : The proof is evident and it has the same
consequences as before. In this case only faults in
the same stage are considered because the correspond-
ing outputs of two faults in one branch depends enor-
mously on the test patterns.

8 Simulation and Evaluation

The proposed method can be applied to any FPGA
(XC3000,XC4000,XC5200 - - - etc). This section illus-
trates the application for XC4000 family because its
LUTs have a possibility to be programmed as RAM as
well as a normal combinational circuit. The simulation
results obtained by testing a single CLB are presented
first followed by a comparision of this method with the
other principal methods.

6.1 Simulation Results

oo & N

H1 Dint2]sp0 | EC

Bypass
GT;:azl‘cL S8 s Ya
g Fume e

[Togic | ' G
Fa—{Losic. ke
s

of Bypass
P2\ prks -D‘I'\l vpa
Fi _U :._r-— EC

KACLOCK)

q 10} X
D Multiplexer controled

by configurable Program

G’
e o 1/
eT{oe I l:zic " j_r— £c
‘unct. _13
2 W :91'—| i =
; or Y
| LhenlPae
D
H/

Figure 12: Basic structure of XC4000 CLB.

The XC4000 CLB is constructed by the following
components, as shown in Figure 12 :

e Six 4-inputs LUTs and one 3-inputs LUT.
e Two flip-flops.

e Six multiplexers with 4 inputs and one output
(multiplexers:1, 2, 3, 4, 7 and 9).

e Ten multiplexers with 2 inputs and one outputs
(multiplexers:5, 6, 8, 10, 11, 12, 13, 14, 15 and
16). ‘

o Two”NOT” gates and two CONTROL S/R blocks
which can be modeled by a 2 input-multiplexers.

A CLB has 13 inputs
(F1,.-. F4,G1,---,G4,C1,.--,C4,CLOCK(K)}, 4
outputs {YQ,XQ,X,Y} and Table 2 shows the reserved

number of configuration cells for every subcircuits. Fi-
nally, 60 configuration cells and 12 inputs (Clock and
associated subcircuits are not counted) are present.
Theoretically for the complete exhaustive test 260+12
test vectors must be submitted to each CLB.

For a complete test achievement of XC4000 (all
modes) in minimum test time possible, only 10 phases
with 76 test vectors are envisaged. And 1604 faults are
generated in this fault simulation with a single CLB.
At every phase one part from these faults is detected
and then a fault coverage is determined.

The Table 3 shows that at the end of the last phase,
100% of fault coverage is obtained.

6.2 Evaluation

This approach is evaluated and compared with the
principal previous approaches: BIST approach [1]-[4],
XOR based approach [8], AND/OR tree approach [7],
Naive approach [6] and Array-based approach [6]. The
same strategy of evalution as in [5] [7] [8] will be fol-
lowed. The comparison is done with respect to the
following issues:

o Generality: Which is defined as the ability of the
FPGA model -assumed in this method- to in-
clude all conventional FPGA without any struc-
tural problems such as I/Os limitations.

e Test time : Which can be evaluated by the total
number of phases in all sessions.

o Single fault diagnosis ability: Which is defined as
the ability of the method to locate single faults.

o Multiple fault diagnosis ability: Which is defined

as the ability of the method to locate multiple
faults.

In (Table 4) the following conventions are used:

4-+: Means widely better than the method in the
reference. :

+: Means better than the method taken as reference.
_: Means less than the method taken as reference.
=: Means same as the method taken as reference.
The Naive approach is used as a reference for this
comparaison (Table 4).
The binary tree method has a good points regarding

the single fault diagnosis and multiple fault diagnosis,
but it has bad point regarding the test time.

Table 2: Number of BUT configuration cells.

categories A number | A configuration | A total
of units cells by unit number
4-inputs LUT 2 16 32
3-inputs LUT 1 8 8
4-input 6 2 12
Multiplexers
2-input 8 1 8
Multiplexers

7 Conclusion

In this paper a novel approach for test and diagnosis
SRAM-based FPGAs is presented. The proposed ap-
proach is based on a binary-tree. It detects and locates
a single fault, detects multiple faults and it is able to
give the exact locations of one part of multiple faults,
while it gives some possible locations for others multi-
ple faults. The binary tree method is applied to CLBs
with different internal architecture. The simulation re-
sults indicate that the proposed method covers 100%
modelled faults.

References
[t] C.Stroud, S.Konala, P.Chen and M.Abramovici,
“BUILT-in self-test of logics Blocks in FPGAs”, 14th
VLSI test symposium, pp. 387-392, 1996.

C.Stroud, P.Chen,S.Konala and M.Abramovici, “Eval-
wnation of FPGAs resources for BUILT-in self-
test of programmable logic Blocks”, PROC. 1996
ACM/SIGDA International. symp. on FPGAs, pp.
107-113, Feb. 1996.

[3] C.Stroud,E.Lee, S.Konala and M.Abramovici, “Using
ILA test for BIST in FPGAs”, International test con-
ference IEEE, pp. 68-75, 1996.

[4] C.Stroud,E.Lee, S.Konala and M.Abramovici, “BIST-
based diagnostics of FPGAs logic blocks”, Interna-
tional test conference, pp. 539-447, 1996.

[5] W.K.Huang, F.J.Meyer and F.Lombardi,Testing
Configurable LUT-Based FPGA’s”, IEEE trans on
VLSI, VOL.6, NO.2, JUNE 1998.

[6] W.K.Huang and F.Lombardi, “A general technique for
testing FPGAs”, IEEE VLSI test symposium, priceton
NJ, p 450-455, 1996

[7] W.K.Huang, F.J.Meyer and F.Lombardi, “Multiple

fault detection in logic resources of FPGAs”, DFT-
VLSI, pp 186-194, 1997.

[8] W.K.Huang, F.J.Meyer and F.Lombardi, “A XOR-
tree based technique for comstant testability of con-
figurable FPGAs”, ATS, pp. 248-253, 1997.

[9] F.Hanchekand and S.Dutt, “Methodologies for toler-
ating cell and interconnect faults in FPGAs”, IEEE
transactions, Vol, 47, no, 1, pp.15-33, January 1998.

~
2

[10] T.Liu and F.Lombardi, “On soft switch programming
for reconfigurable array systems”, DFT-VLS], pp. 203-
211, 1994.

[11] M.Renovell et al, “Testing the interconnect of RAM-
based FPGAs”, IEEE Design and test of computers,
pp. 45-50,1998.

[12] T.Inoue, S.Miyazaki and H.Fujiwara, “Universal fault
diagnosis for lookup table FPGAs”, IEEE Design and
test of computers, pp. 39-44, 1998.

[13] T.Inoue, S.Miyazaki and H.Fujiwara, “On the com-
plexity of universal fault Diagnosis for lookup table
FPGAs”, IEEE Design and test of computers, pp. 276-
281, 1997.

[14] M.Renovell et al,“Test pattern and test configuration
generation methodology for the logic of RAM-based
FPGAs, ATS, pp. 254-259, 1997.

[15] H.Elhuni and al,“C-Testability of two-Dimensional it-

erative arrays”, IEEE transaction on computer-aided
design, vol.cad-5,n0.4, pp. 573-581, 1986.

Table 3: Configuration phases.

Phases Subcircuit Number of | Number of Faults Fault
Tested Test vectors Detected Coverage
1 RAM AND 16 1212 5%
Flips-Flpops
2 4-inputs LUT 16 194 87,6%
. And FFs
3 4-inputs LUT 16 132 95,8%
And FFs
4 MUXs 2 3 96.1 %
5 MUXs 2 4 96.3%
6 MUXs 2 3 96,5 %
7 MUXs 2 3 96.7 %
8 3-inputs LUT 8 18 97.8 %
9 3-inputs LUT 8 15 98.7 %
10 carry 4 35 100 %
Table 4: Approaches Evaluation.
BIST Naive Array-based [AND/OR tree | XOR tree | Binary tree
Generality - Reference - + + =
Test time - Reference + ++ -
Single fault diagnosis able unable unable unable able
Multiple fault diagnosis | unable unable unable unable able

[16] A.D.Friedman, “Easily testable iterative systems”,

[17]

18

[19

[20

[21

[22
(23

[24

]
]

]

e

IEEE transaction on computers, vol. ¢-22, no.12, pp
1061-1064, 1973.

P.R.Menon and A.Friendman, “ Fault detection in it-
erative logic arrays”, IEEE transactions on computers,
vol.c-20, no.5, pp.524-535,1971

S.Wang and T.Tsai, “Test Diagnosis of faulty logic
blocks in FPGAs”, ICCAD, pp. 722-727, 1997.

E.McCluskey, “Verification Testing a pseudoexhaus-
tive Test technique”, IEEE tran on computers, vol C-
33, No.6, pp. 541-546, june 1984,

H.Michinishi et al, “A test methodology for config-
urable logic blocks of lookup table based FPGAs”,
IEICE tran.D-I,vol j79-DI, no.12, pp. 1141-1150, Dec
1996.

W.K.Huang and F.Lombardi,“An Approach to test-
ing Programmable/Configurable Field Programmable
Gate Arrays,” Proc.IEEE VLSI Test Symp.,pp. 450~
455,1996.

C.Jordan and W.P.Marnane, “ Incoming Inspection of
FPGAs,” Proc.European Test Conf. pp. 371-377, 1993.
XLINIX data book, Field programmable gate ar-
rays,1998.

ALTERA data book, Field programmable gate arrays,
1993.

