VAT LL S TEEHR 94—10
(2000. 1. 1D

o By b U TILFPGA & X7 LORE
—fEl KEEA EEE

B IERY HAA - B LER

T 152-8552 HAXAMIL 2-12-1
E-mail: {isshiki,aohta,kunieda}@ss.titech.ac.jp

H5FEL FPGA OFENIBWT, FETHIMLY —VIZLIATH HA%, INnH DY — VA
B A mEEE % Oa, BEMCZL Wi omBEENEOK TR EENOK T BT
WILONPBIRTH B, A, ZOFFHBMLEHBEERAE X7 -3 2D EOWIL
EWHHBObLE, ¥y b U T VREIBIZED W FPGA ETORENI DWW THFZEL #ED T
Wb, KEHLTE, AP BRIEE T TRAE y Y Y PVAKES, 77U r—varvik
SHBEORSE, WY vy P U TAMHFPGA 7 —F 57 7 F Y DOBE, HiionTT ey, &
LICAHAETL TV ATFRIZ OV THRN S,
F—T7—FK FPGA, ¥y b UTN, @157 4= A, mBEHZHE, SEEE

Development of Bit-Serial FPGA System

Tsuyoshi Isshiki ~ Akihisa Ohta Hiroaki Kunieda

Dept. of Electrical and Electronic Engineering
2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
E-mail: {isshiki,aohta,kunieda}@ss.titech.ac.jp

Abstract Design automation is essential in FPGA designs. However, the circuits gen-
erated by these synthesis tools tends to have poor circuit routability, resulting in low logic
utilization and/or low circuit speed. We have been investigating the use of bit-serial circuit-
s in FPGA environment to address this difficult issues of incorporating design automation
while guaranteeing a highly efficient routability of the circuit, therefore increasing the sili-
con utilization and improving performance. Our research stems widely from bit-serial circuit
designs, development of application design environment, development of new FPGA archi-
tectures, as well as new FPGA applications. In this paper, we summarize our work on these

issues as well as some of the current on-going researches.

Keywords FPGA, Bit-serial, High performance, Logic utilization, High routability

1 Introduction

Silicon process technology is constantly keeping up the
pace of improvement in the last few decades, which will
soon reach 0.1p. As the circuit size inside the chip grows,
the device area devoted only for wiring signals becomes
significantly large. Especially in the case of FPGAs, this
increase in the routing resource results in the decrease
in the silicon utilization of the actual user-logic resource,
where the logic density is already a factor of magnitude
lower than the full custom chips. The focus of the cur-
rent state-of-the-art FPGA architectures is directed on
increasing the routing capacity as well as the logic ca-
pacity. This is a great dilemma for the FPGA architects,
where insufficient routing resource results in low logic u-
tilization, but increasing the routing resource also results
in low silicon utilization dedicated to logic implementa-
tion.

Also, by the many works on the high-level synthesis
community and layout CAD community, fully automat-
ed design systems from the behavioral synthesis to au-
tomatic placement and routing already exist for FPGA
environment. However, its effectiveness is still question-
able for its incapability to handle large problems and the
quality of the produced results.

Our research group has been investigating the use of
bit-serial circuits in FPGA environment to address these
difficult issues of incorporating design automation while
guaranteeing a highly efficient routability of the circuit,
therefore increasing the silicon utilization and improving
performance. Our research stems widely from bit-serial
circuit designs, development of application design envi-
ronment, development of new FPGA architectures, as
well as new FPGA applications. In this paper, we sum-
marize our work on these issues as well as some of the
current on-going researches.

2 Bit-Serial Pipeline Synthesis
System

We have developed an application design environment
which targets FPGA-based configurable systems where
the hardware is configured for a specific application in
order to accelerate the application normally running on
software. The main goals of this design environment are

e To simplify the design task so as to be accept-
able by software designers oriented towards the-
ory and application. This includes eliminating
the need for HDL coding, enabling simultaneous
hardware/software design verification, and fully au-
tomating the circuit synthesis and layout tasks.

e To guarantee accurate prediction of performance
and hardware resource utilization before the lengthy

full adder 7' 02

cout cin

out_h

h_out

out_o

(b) Double precision adder
with overflow extention

(a) Single precision adder
with overflow extention

Figure 1: Bit-serial adders. Hashed regions are the over-
flow extension circuits.

ulsamuupn lm’l[n]uhxl iner multiplies cell (PEIG = 1. 2., N=2)}

T Tner

PE] a7 l:ll- PE(] a7 BE pegz “

11) (Y) (y,)

(d) 2's complement bit-serial multiplier

Figure 2: Bit-serial multiplier. It has a linear array

structure.

layout synthesis. Totally eliminate the need for low-
level manual intervention which requires not only
expert digital system design skills but also the deep
understanding about the target FPGA architecture.

2.1 Structure of Bit-Serial Circuits

In our bit-serial synthesis system, we provide a numbers
of bit-serial operators essential in designing various ap-
plications such as adders, multipliers, scalers, rounder-
s, saturaters, parallel-to-serial and serial-to-parallel con-
verters, etc., which are efficiently implemented on LUT-
based FPGA architectures. Fig.1 shows the bit-serial
adder, and Fig.2 shows the bit-serial multiplier. For in-
ternal computation, we provide double precision num-
bers using two data lines mainly for output data of mul-
tipliers which produces double precision products. Also,
in a situation where a large number of accumulations
occur and overflow is unavoidable, we provide additional
data line for overflow prevention. For N-bit single pre-
cision data, extended single precision data has 2/V bits,
and extended double precision data has 3N bits. Various
types of rounders and saturaters are provided to convert
these data types.

C++ application software
C++ datapath description

i (difference equations)

link Bit-serial circuit fibrary |

Bit-serial synthesis routines J

simulation input
(text, graphic,

circuit generator
~ data-flow graph generator

~ pipeline synchronizer

- 10 interface scheduler

- bit-serial control signal router
- pipeline register minimizer

- circuit netlist generator

| circuit partitioner |
Gartitioned X@

Figure 3: Design flow of our bit-serial synthesis system.
The designer describes the algorithm in terms of differ-
ence equations on C+-+ using our dedicated class ob-
jects. The C++ program is compiled by a standard
GNU C++ compiler (g++) which produces an executable
file which performs behavioral simulation, circuit gen-
eration and circuit partitioning, and produced circuit-
level netlist (partitioned XNF files, unpartitioned VHDL
code).

ehavioral simulator

simulation output
{text, graphic)

2.2 C+-+ Design Capture

The design flow is illustrated in Fig. 3. First, the
designer will enter the design of both the hardware and
software using C++ [3]. Software design description is
allowed to use the full capability of C+-+, whereas the
hardware description is done by difference equation for-
mulation on C++ using a set of hardware class variables
(Fig.4). This C++ file is compiled by a general C++
compiler where the produced executable file becomes
both the behavioral simulator for the total application
(software and hardware) and also the circuit generator
for the hardware design. The software description can
also include breaking points and text or graphical out-
puts for debugging purpose. Any C++ debugger tool
can also be used for this purpose as well.

2.3 Bit-Serial Pipeline Synthesis

Our bit-serial pipeline synthesis methodology consists of
capturing the difference equations and converting them
into data-flow graph, converting the data-flow graph
into primary circuit netlist by direct mapping of the
arithmetic operators into bit-serial hardware modules,
pipeline scheduling/optimization, and circuit partition-
ing.

1D_FIR(int &int, int &out, Interface &bus,
Single x[8], Single &y, Double af8],
double coef[8])
{
set_signal_precision(16);
// setting the signal word length to 16 bits

for(int j=0; j < 8; j+H){

if (j==0){
x[j] = bus.read(in); // x[] is the input data
aljl = x[j] * coef[jl;

}

else{
x[j1 = delay(x[j-11);
// x[j] is the delayed by one sampling period
// from x[j-1]
aljl = x[j] * coef[j] + alj-11;

= round(af7]); // convert from double to single
bus.wire(out) = y; // y is the output data

- J

Figure 4: 1D FIR filter C++ description

Circuit Generation After the design is captured by
C++ by means of difference equations, bit-serial cir-
cuit modules are created for each distinct arithmetic
operation by calling the bit-serial circuit library and
the primary circuit netlist is constructed.

Minimum Sampling Period Calculation The min-
imum sampling period is calculated in the case
where there are loops in the pipeline datapath.

Pipeline Scheduling Optimization After the mini-
mum sampling period is determined, the pipeline
network is synchronized by inserting retiming regis-
ters in order to equalize the latency on every path
in the network. At the same time, the number of
retiming registers are minimized in order to reduce
the hardware overhead.

2.4 Routability of Bit-Serial Circuits

In analyzing the circuit structure to evaluate the area
required for VLSI layout, Rent’s rule is commonly used
[2] [6] [1]. This rule defines the relationship between the
average number of pins and the average number of logic
circuits in a subcircuit. which is expressed as P = k-G,
where P is the average number of external pins in a sub-
circuit, and G is the average number of modules in a sub-
circuit. kis the Rent constant which has empirically been
found to correspond to the average number of pins per
module. « is the Rent ezponent which ranges between
0 and 1. It is well known that for circuits whose Rent
exponent v is over 0.5 (this is found to be the case for
most real-life circuits [2] [1]), the average wiring length
grows exponentially with the circuit size G' [6]. This im-

plies that the routing resource (routing channel width)
needs to be increased as the chip size grows. This rule is
in fact forming the basis of current FPGA architectures,
where larger chips are provided with increased number
of routing channels.

100 T v
N12-14-4 o
4.916 * x ** 03724 -
5 P
5 o
£ o
E §
= ,;’
10 -
100 1000
number of CLBs

Figure 5: Rent’s exponent approximation for N12-14-4.
The two axes are log-scale.

We have obtained the Rent’s parameters for our vari-
ous bit-serial designs by applying multi-way partitioning
with different size constraints. The method for deriv-
ing Rent’s parameters is to plot the average CLB counts
and the average IO counts per partition on the log-log
scale and use linear regression to estimate the slope and
the intercept [4]. Here, CLB is the logic block of Xilinx
3100A FPGA. Fig.5 shows the plots for bit-serial neural
network circuit. The Rent’s parameters for other designs
are summarized in Table 1. Compared to Landman and
Russo’s work where they reported the Rent’s exponent
to be between 0.47 and 0.75, our bit-serial circuits have
a significantly lower Rent’s exponent between 0.22 and
0.37. This implies that our bit-serial circuits are very
highly routable circuits on two-dimensional plane. This
was caused mainly by the dominant bit-serial multiplier
circuits. These multipliers whose Rent exponent is 0 (a
linear array) absorbed the circuit complexity in terms
of Rent exponent at the high fanout nodes. There have
not been any studies on logic circuits which reveal such a
low Rent’s exponent for real applications. Our bit-serial
circuit design and our bit-serial pipeline network syn-
thesis strategy led to such an extremely routing-efficient
circuit structure. Since FPGAs are tuned to implement
“hard-to-route” real circuits having high Rent exponent
of over 0.5, we can expect that lack of routing resource
on FPGAs for our bit-serial circuits is unlikely to cause
any problem.

Table 1: Rent’s parameters for bit-serial circuits. “N-
12-14-4" is a digital neural network with 12, 14, 4 n-
odes on each layer. “N-8-8-4” is a digital neural net-
work with 8, 8, 4 nodes on each layer. “1D-FIR-30-1I”
is a 30-tap 1D FIR filter. “2D-FIR8x8” is an 8x&-tap
2D FIR filter. “1D-TIR20-IIT” is a 20-tap recursive fil-
ter with 2 sampling period lookahead on the feedback
loop. “adaptl0T-7” is a 10-tap 1D adaptive FIR filter
where the coefficient updating cycle delay is 7 sampling
periods. “IDCT-I” is an Inverse-DCT circuit.

design ~y k
N-12-14-4 0.3724 | 4.916
N-8-8-4 0.3264 | 5.878
1D-FIR30-1I | 0.2218 | 6.018
2D-FIR8x8 | 0.3245 | 4.665
1D-ITIR20-IIT | 0.3264 | 5.878
adapt10T-7 | 0.3735 | 5.150
IDCT-I 0.3394 | 5.493

3 A New Bit-Serial FPGA Ar-

chitecture

Based on these studies, we have designed our own FPGA
architecture which specifically targets bit-serial circuits.
Our bit-serial FPGA contains logic blocks, routing block-
s and I/O blocks as same as popular FPGAs. Our FPGA
chip floorplan is shown in Fig.6. Logic block (L) imple-
menting combinational and sequential logic is placed in
a regular array on the chip. Routing blocks (S and C)
provide interconnect of each logic block. I/O block (10)
surround the core.

3.1 Logic Block Core Architecture

The logic block core is a primitive block in bit-serial
FPGA. One of the distinctive characteristics of bit-serial
circuits is that the connectivity inside the cell is dense,
while the connectivity between bit-serial cells is sparse.
Our strategy here is to increase the logic capacity of the
logic block and absorb the dense interconnection inside
the logic block to reduce the inter-block routing resource.

Fig.7 shows the logic block core. The design was based
on Xilinx 3000 series FPGAs, since our bit-serial data-
path synthesis system was originally applied to this ar-
chitectures in which we had much success. The modifi-
cations we employed to this architecture are:

1. The number of 4-input LUTs is increase to 4, while
a pair of LUTs share the same inputs. By dou-
bling the number of LUTs, more nets connecting the
circuit elements inside the bit-serial cell are buried

Figure 6: Bit-serial FPGA chip floorplan.

inside the logic block, which results in savings of
inter-block routing resource.

2. There are 6 multiplexers at the inputs and outputs
of each LUT which are inserted specifically to effi-
ciently implement bit-serial cell. The 2 multiplexers
at the inputs (m0, m1) are for initializing the carry-
bit when the bit-serial data cross the word bound-
ary. c2,c3,c4,c5 are the feedback signals from the
FF outputs d0 ~ d6. These four signals can also be
connected to 0 or 1.

3. Two additional FFs are added which simply latches
cl and ¢2. They are inserted to provide shift register
elements within the bit-serial pipeline datapath.

3.2 Two-Level Routing Architecture

The number of inputs and outputs on the logic block is
rather large (24 pins), although the number of signal-
s coming into or outgoing from the logic block in the
actual bit-serial design is small (typically below 10 pin-
s). Since our aim in making the logic block large is to
absorb the feedback routing inside the logic block, we
need to provide a rich feedback routing resource inside
the logic block. To achieve this, we developed a two-level
routing architecture for our bit-serial FPGA. Fig.8 and
Fig.9 illustrate our two-level routing architecture. The
routing is divided into two-levels : exzternal block routing
and internal block routing.

3.2.1 Internal Block Routing

Signal routed to one of the logic block pins is buffered
at the boundary of the block, and then connected to

<0
cl

clk g

Figure 7: Logic block core architecture of bit-serial FP-
GA.

yet another routing network. North and west pins have
connectivity to inputs ag, a1, as, as, a4, as, cg and all out-
puts. On the other hand, east and south pins have con-
nectivity to inputs bg, by, by, b3, by, bs, ¢; and all outputs.
When any of the input pairs (ao,bo), (a1,b1), (a2,b2),
(as, bs), (aq,bs), (as,bs) share the same signal, they can
be accessed from all four directions using bypass con-
nections. Dedicated feedback connections for the inputs
Ca,C3,¢4,c5 from the outputs do,d;,ds, ds are also pro-
vided.

3.2.2 External Block Routing

External-block routing is implemented with S-blocks and
C-blocks. S-blocks are connected to 8-track single-length
routing segments for four directions. S-blocks provide
connectivity with the four routing segments using 8 pro-
grammable switches. This programmable switch realizes
15 types of connections as shown in Fig.9. This routing

‘architecture using 8 signal track segment and S-block is

based on the Xilinx XC4000 architecture for its simplic-
ity in constructing the routing program.

C-blocks provide connectivity between routing seg-
ments and logic blocks using 4 programmable switches.
This programmable switch realizes 4 types of connection
as shown in Fig.9. Each logic block contains four bidi-
rectional pins on all four directions (16 pins total), each
of which is connected to a C-block. This simplification
of C-block is one of a distinct feature of our two-level
routing architecture.

¢
’#—i \
:ate buffer

1 aMOS bidirectional pins
pass—transistor . buf i
I _ input buffer output interconnect
[i__mu!_lmatszgnnegmemgr.lsﬁ_‘ A Y netwark
|
|
“
|
|
|
|
|
B

1

t 7 |
|
}

A A
2
CAMA

1
r
>
{
r
\
!
!
1
!
]
!
\
!
y
]
1

o
A 7

i

Py,

E————
©
.
b

N MR

|
|
|
!
|
- J

S LR

bybabs|cdndedtion

|
|

g

internal feedback comglﬁ

+#

d0d1d2d3d4ds

|
18 &

TVVVEYVEV Y YY YUYy T
a0a132al3a4a5b0b1b2b3b4ab5c0cic2c3cdcs

Figure 8: Internal block routing architecture of bit-serial
FPGA.

Table 2: Component size for bit-serial FPGA.

[Unit | Size |
Transistor count 200k
Die 4.8mm x 4.8mm
Core 3.5mm x 3.5mm
L-Block 332pum x 320pum
S-Block 138um x 37um

C-Block(Type I)
C-Block(Type II)
L+S+Cx2
Configuration block

43um x 37pum
&.5um x 150pm
385um x 407pum
350pum x 80um

3.3 VLSI Implementation

The bit-serial FPGA architecture was first transformed
into a transistor-level description on Verilog (1 months x
2 persons), and full-custom mask layout was performed
(4 months x 2 persons). The process technology used
in this design was 0.5um (gate length = 0.6pum) 2-metal
process. Due to limited manpower and time, we could
not spend enough time on the floorplanning and transis-
tor size optimization. Therefore, the layout result leaves
room for further improvement on area and speed. Com-
ponent size for our design chip is summarized in Table.2.
One logic block, one S-block and two C-block consumed
385um x 407um area. With further rework on the lay-
out, and by using 3-metal process which is common for
current technology, we should be able to minimizing the
empty space surrounding the S-block and C-block cells
and also the wiring areas of the &track routing segments.
If this can be achieved, the area of 385um x 407um is

1
T
1
T
1

[|
e
=
g
]

f e B ek e 1

I
1
1
1
i

B H
W

VAYAVA

AAVATSy

§
T
I
t
Il

e
[e i}

T
T
]
]
1

1 s [

Figure 9: External block routing architecture of bit-
sertal FPGA.

Table 3: Estimated performance of our bit-serial FPGA
chip.

max. gate/block ~T0 gates
max. gate/chip ~4500 gates
clock frequency 156 MHz

(assume 4 manhattan distance routing)

16-bit multiplication (x2) 19.5 MOPS

8-bit multiplication (x4) 78 MOPS
16-bit addition (x64) 624.64 MOPS
8-bit addition (x64) 1.25 GOPS

expected to shrink to within 350pum x 350um (the raw
area sum of L-block, S-block and 2 C-blocks are less than
(3351m)?). Inside the 3.5 x 3.5mm chip area (excluding
I/0 area), there are 8 x 8 logic blocks and 64 I/O block-
s (Fig.6). Various data are shown in Table 3. In one
chip, we can fit either two 16-bit multipliers, four 8 bit
multipliers, or 64 double-precision adders (independent
of word size). Fig.11 shows the result of layout.

Total delay from flip-flop output to flip-flop input with
4 manhattan distance routing is 6.4 ns, which results
in 156MHz clock operation. Since the longest wiring
length (critical path) is shorter than parallel structure,
we obtain higher speed. This is one of distinctive features
in bit-serial circuits. Another factor of high speed is to
divide routing resource into two parts. Since we put
buffer between internal and external routing resource,
we can also reduce critical path delay.

Table 4: Mapping results I : 2D FIR filter (5 x 5-tap, 8-bit), wave filter (5th order, 16-bit), adaptive FIR filter (10-tap,

16-bit) and IDCT (8-point, 16-bit)

Application Chip size | Gate Count | LUT count | Logic util. | Ave. routing dist. | Max routing dist.
2D FIR filter 14 x 14 6791 518 96.4% CLTT 5
IDCT 19 x 19 13369 898 94.2% 1.92 6
Wave filter 21 x 21 15846 530 95.0% 1.93 7
Adaptive filter | 35 x 35 48510 2397 96.5% 1.86 9

Figure 11: Layout of bit-serial FPGA chip (left), and layout of logic block (right).

4 Design Examples

We have developed a placement tool based on simulated
anealing and a routing tool based on maze router for our
bit-serial FPGA. Based on these dedicated FPGA lay-
out tools together with our bit-serial datapath synthesis
system described earlier, we have done experiments on
mapping several applications. Fig.10 shows a mapping
result of IDCT on a chip with 19 x 19 logic blocks. Here,
the chip size is set to n x n such that the total number of
logic blocks is larger than the required number of logic
blocks for each circuit.

Table 4 shows mapping results generated from our -

placement and router tool. One of the distinctive feature
is that all applications have very high logic utilization n-
ear 100% and very small average distance. These appli-
cations can be implemented as dense as possible and the
routing between logic blocks are very localized. These
results show that our bit-serial FPGA architecture can
scale efficiently while guaranteeing near 100% utilization
without adding extra routing resource.

Chip scalability in terms of performance is largely af-

fected by the quality of place-route tools. While the
average routing distance is low regardless of the chip
size, maximum routing distance, unfortunately, increas-
es with the chip size. This is solely due to the place-
ment algorithm we employed with was routability-driven.
Our routing tool was able to guarantee minimum dis-
tance routing of the longest nets. The primary goal
for routability-driven placement is to minimize the aver-
age routing distance, and therefore minimizing the dis-
tance of longest nets is given a lower priority. Since our
bit-serial circuits are extremely routing efficient, we are
currently seeking ways to develop a performance-driven
placement which can trade off speed (longest net dis-
tance) and routability (average net distance) so as to
guarantee high clock speed operation as well as high log-
ic utilization regardless of the chip size.

5 Current Research Topics

We are now expanding our research on a next generation
bit-serial FPGA architecture and new applications.

Figure 10: Mapping result of IDCT

e We have completed a new logic block architecture
design which efficiently implements shift registers
using LUT [5]. Shift registers compose a large por-
tion of the bit-serial datapath, more than 60% of
the gate count in some cases. With a modification
on the LUT circuitry, we are now able to implement
16-bit shift registers in each 4-input LUT, which re-
sults in a significant savings of logic block resource.
Synthesis tool which handles this new logic block
architecture is also completed.

o We have set the main target for our next generation
bit-serial FPGA on image/video processing and 3D
graphics. We are now exploring ways to incorporate
new packaging technologies to provide a high da-
ta bandwidth between large external memory. One
key technology is to utilize “area-10” where the 10
blocks are located inside the chip core, drastical-
ly increasing the number of I0s. Using this area-
IO, the FPGA dice (unpackaged) is mounted on a
large DRAM dice (also unpackaged) by the Chip-
On-Chip assembly technology, resulting in a single
“substrate-less” Multi-Chip Module. This technol-
ogy, unlike System-On-A-Chip, enables to utilize
the latest process technologies individually tuned
for DRAM and logic, and achieves a significant in-
crease in data bandwith which is needed for video
and 3D graphics applications. Design of area-IO ar-
chitecture, new DRAM architecture, and new bit-
serial circuit libraries for these applications are now
in progress.

6 Conclusion

In this paper, we have introduced our work on bit-serial
pipeline synthesis system which can empirically guaran-
tee high performance and high logic utilization. The
significant factor of this system’s capability is the high
routability of our bit-serial circuits. We have used Ren-
t’s rule to compare the expected wiring length of the
real-life circuits observed in the past and our bit-serial
circuits. While the average wiring length of most of those
real-life circuits grows with the circuit size, the average
wiring length of our bit-serial circuits are expected to
remain constant with different circuit size.

Also, based on this observation, we have developed
our own bit-serial FPGA architecture and implemented
on VLSI. Our design examples based on our bit-serial
datapath synthesis system and our taylor-made place-
ment and routing tools show that our bit-serial FPGA
can guarantee high utilization and high performance for
a number of applications.

We are currently in the phase of a next generation bit-
serial FPGA architecture utilizing a new system packag-
ing technology which targets image/video processing and
3D graphics applicatinos.

Acknowledgement

Authors would like to thank the members of CAD21 Re-
search Body of Tokyo Institute of Technology and mem-
bers of FPMCM project of University of California at
Santa Cruz for their suggestion and cooperations.

References

[1] B. Landman and R. Russo, “On a Pin Versus Block Re-
lationship for Partitioning Logic Graphs,” IEEE Trans.
Computers, pp.1469-1479, 1971.

[2] L. Hagen, A. B. Kahng, F. J. Kurdahi, C. Ramachandran,

“On the Intrinsic Rent Parameter and Spectra-Based Par-

titioning Methodologies,” IELE Trans. Computer-Aided

Design, pp.27-37, Jan. 1994.

Tsuyoshi Isshiki and Wayne Wei-Ming Dai, “Bit-Serial

Pipeline Synthesis for Multi-FPGA Systems with C++

Design Capture,” Proc. IEEE Symp. FPGAs for Custom

Computing Machines, April 1996.

[4] Tsuyoshi Isshiki, Wayne Wei-Ming Dai, Hiroaki Kunieda,
“Routability Analysis of Bit-Serial Pipeline Datapaths”,
IEICE Trans. Fundamentals, E80-A, pp.1861-1870, 1997.

[5] Akihisa Ohta, Tsuyoshi Isshiki, Hiroaki Kunieda, “New
FPGA Architecture for Bit-Serial Pipeline Datapath”,
Proc. of IEEE Symp. FPGAs for Custom Computing Ma-
chines, 1998.)

3

[6] Wilm E. Donath, “Placement and Average Interconnec-
-tion Lengths of Computer Logic,” IEEE Trans. Circuits
and Systemns, pp.272-277, April 1979.

