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Abstract We improve the algorithm to obtain the min-cut graph of a hyper-graph and show an
application to the sub-network extraction problem. The min-cut graph is a directed acyclic graph whose
directed cuts correspond one-to-one to the min-cuts of the hyper-graph. While the known approach
trades the exactness of the min-cut graph for some speed improvement, we propose an algorithm which
gives an exact one without substantial computation overhead. An exhaustive algorithm is proposed to
find an optimal sub-circuit that is cut by a min-cut from the rest. By experiments with the industrial
data, the proposing method showed a performance enough for practical use.
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1 Introduction

Partitioning is essential in various stages of hierarchal
VLSI design. The problem formulations as well as its
solutions have been studied extensively. Studies related
to our subject are found in (1], [2], [9], [7], [14], and
[15]. See [3] for an extensive survey. Since the problem
is so diversitive, we start with some general framework
with respect to problems,; approaches and application
environments.

In partitioning a given huge circuit into sub-circuits,
three major indices are focused : 1. the cut size (num-
ber of edges interconnecting sub-circuits), 2. the num-
ber of sub-circuits, and 3. the balance (maximum dif-
ference of sizes) of sub-circuits. The problem formula-
tion, approach and environment are stated in terms of
them.

Typical problem formulations are such that “parti-
tion a given circuit into a certain number of sub-circuits
minimizing the cut size” and that “partition the circuit
under the constraint of a limit of cut size minimizing
the number of sub-circuits”. There are other combina-
tions of three indices but they are too unrealistic to be
considered in VLSI design.

The approaches are classified roughly in two ways,
one based on the max-flow min-cut theorem and the
other based on the greedy vertex exchange strategy
(such as KL or FM methods).

While applications of partition in VLSI design are in
two environments. One is in the placement based on
the slice line structure. Since the circuit is embedded in
two divided half zones, it is necessary to give a solution
to :

(Slicing Problem) Find a partition into two with
the minimum cut-size under the constraint on the num-
ber and balance of sub-circuits.

The other is in module design of pre-fabricated cir-
cuits such as FPGA or MCM architecture. Since each
module is a look-up table or a cell in a library, the
problem is described as :

{(Module Problem) Find a partition of the circuit
into .the minimum number of sub-circuits under the
constraint of the cut-size and balance of sub-circuits.

For the Slicing problem, the max-flow min-cut based
approach has not been believed effective since the algo-
rithm finds a difficulty handling hyper-edges, the bal-
ance is not controllable, and the computational cost is
large. So, the exchange based approaches have been
taking the place by the merits: it has no discrimina-~
tion against hyper-edges, its computation cost can be
any small (the algorithm could stop any time), and the
balance can be arbitrarily defined (the initial partition
defines the balance). The only problem, but fatal, is
that the approximation to the exactness is not known.

For the Module problem, both approaches were con-
sidered not adequate. The exchange based one has no

Min-Cuts

Cy G C3 Cy 5 Cs

Cut Weight =4

Figure 1: Hyper-Graph H and its s-t min-cuts of cut
weight 4. An edge with two end vertices are drawn as
a single line, while an edge with more than two end
vertices are drawn as a curve.

idea to minimize the number of sub-circuits. It is also
true that the max-flow min-cut based approach com-
plies no idea of balancing nor minimizing the number
of sub-circuits.

The concern of this paper is in the Module problem.
However, 1t is so intractable that we introduce an al-
ternative which is described as follows.

(Extraction Problem) Given a circuit with two
vertices assigned, extract a sub-circuit that includes
one designated vertex inside and the other outside un-
der the constraint of the size of the cut being minimum
and that of the circuit within a specified range.

To approach this problem, the only algorithm so far
proposed is to fix a maximum flow, find one minimum
cut to split the vertices to S and T where the source
is in S, and choose one vertex in 7" and find the flow-
reachable vertex set 7'. Then, the cut that separates
TUT' is another minimum cut. Select one vertex there,
and continue. Not to miss any minimum cut, the choice
shall be from all the vertices. Hence this meek algo-
rithm needs n times of the whole graph traversal, which
is not tolerable by its huge computation time.

To display all the minimum cuts, a useful data struc-
ture known by the name of min-cut graph [6] exists.
It is a directed graph M(H) defined for any hyper-
graph H with a source and a sink such that all the di-
rected minimum cuts of M(H) correspond one-to-one
to the minimum cuts of H. The existence of the min-
cut graph for an ordinary graph is a known fact. For
the hyper-graph H, as far as the authors know, it was
first suggested by Liu and Wong in [6]. See Fig. 1 for a
hyper-graph H. This graph has min-cuts Cy, ..., Cg of
cut weight 4. See Fig. 2 for its corresponding min-cut
graph M(H).

They [6] claim merits of the min-cut graph but men-
tioned also that the penalty is in the computational
cost to obtain it since they assumed the meek algorithm
mentioned above. And they proposed to a heuristic
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Figure 2: The min-cut graph M (H) for H. Each vertex
in M(H) is labeled by a set of vertices in H surrounded
by its min-cuts.

as a compromise. The first objective of this paper is
to claim that the min-cut graph is easy to obtain by
noting if we come to the idea that each strongly con-
nected component of the fiow graph with respect to the
flow-reachability corresponds to a vertex of the min-cut
graph.

Once M (H) is obtained, we would use it to extract
a sub-circuit from H. It is done by extracting one sink
after another considering maximization of the evalua-
tion. If it is done by exhaustive search, the variety will
increase exponentially according to the number of new
sinks born each time a vertex is extracted. We dare
to apply the strategy faithfully to the industrial data
which are consisting of thousands of vertices and the
size constraint is around hundreds of vertices. The sec-
ond objective of this paper is to show by experiments
that this apparently brute-force will work in a reason-
able computation time. It also revealed the merit of
using the exact min-cut graph, unlike the study found

in [6].

2 Flow-Graph and Flow-Block

Let F = (V,E) be an ordinary flow-graph where V
and E are the sets of vertices and edges, respectively.
(u,v) € E is an edge with direction from u to v. Bach
edge e has an associated capacity cap(e). Special ver-
tices s and t are the source and sink, respectively.

Assume an s-t flow of F. Of each edge e, flow(e)
denotes the amount of the flow on the edge. An edge
e is said saturated if flow(e) = cap(e) and zero-flow if
flow(e) = 0. A vertex p is flow-reachable from vertex
v if there exist a flow-augmentable path from v to p.
The maximal amount of flow (or its flow distribution
on the edges) from s to ¢ is referred to as a mazimum
s-t flow, or simply a maz-flow. In a max-flow, there is
no flow-augmentable path from s to ¢, that is, ¢ is not
flow-reachable from s. A max-flow can be computed
by known algorithms, for instance, by the preflow-push
method in O(n?m) [10], [11] where n = |V| and m =
|E|.

Let V| and V5 be sets of vertices such that s € Vi,
teVo, Vi,Vo CV, V=ViuVyand VNV, =0. The
set of edges connecting a vertex in ¥} and a vertex in
Vs is called an s-t cut, denoted by [Vi, V2]. An edge
(u,v) in [V1, Vo] is called forward if u € V; and v € Vs,
and backward if u € V5 and v € V;. The capacity of an
s-t cut C, denoted as cap(C), is the sum of capacities
of all the forward-edges. An s-t cut with the minimum
capacity is referred to a minimum s-t cut, or simply a
min-cut.

Assume a max-flow. Let a flow-block be a set of
vertices separated by the min-cuts. An equivalent
definition is that two vertices are in the same flow-
block if and only if they are mutually flow-reachable.
Thus a flow-block is a maximal set of mutually flow-
reachable vertices. That is, a flow-block is equivalent
to the strongly connected component in terms of flow-
reachability.

3 Constructing The Min-Cut :
Our Proposal

We confirm that our main task is to (1) find all the flow-
blocks, and then (2) browse them to find an appropriate
min-cut. Our approach consists of the following four
steps. The details will be given later.

Procedure 1. (Construction of M (H) : outline)

Input : Hyper-Graph H
Output : Min-Cut Graph M (H)

1. (Graph Transformation) Get the s-t flow-graph F
by applying the Yang-Wong transformation to H.

2. (Max-Flow) Compute a max-flow in F'.

3. (Finding Flow-Block Candidates) Obtain F’ by
applying Flow-Reachability transformation to all
the virtual edges with their incident vertices.

4. (Strongly Connected Component) Find the
strongly connected component in F’. Get min-
cut graph M(H) by contracting each of them into
a single vertex.

3.1 Graph Transformation

We transform H = (Vy,Epy) to a directed graph
F = (Vr, Er) by applying Yang-Wong Transformation
to all the hyper-edges. This transformation replaces a
hyper-edge ey with a structure, called the local struc-
tureof eg. See Fig. 3 for an example where Yang-Wong
Transformation is applied to a hyper-edge with three
end vertices. The formal definition is as follows.
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Figure 3: Yang-Wong Transformation : Local Struc-

ture

Definition 1 (Yang-Wong Transformation of ey
with weight w : Step 1 in Procedure 1.)

1. Create a pair of vertices z and &'.

2. Create a directed edge ep = (x, ") with cap(ep) =
w.

3. For each end vertex v of ey, create a pair of
directed edges ¢ = (v,z) and ¢ = (z',v) with
cap(e) = cap(e’) = co.

0

VF consists of two kinds of vertices, copies of Vg and
the added ones. We refer to the copied ones as original
vertices, the added ones as wvirtual vertices, and the
added edges (x,2') as virtual edges.

An observation leads the following fact : In F, ev-
ery vertex is contained in a directed cycle consisting of
two infinite-capacity edges and one edge, which is the
virtual edge, of capacity w. Then, any cut C = [V, V{]
in F with finite capacity cannot contain a virtual edge
as a backward edge. Assume C to be a min-cut. A
virtual edge is contained in C if and only if at least one
end-vertex belongs to V; and at least one to V;. Hence,
cap(C) in F is equal to the sum of the capacity of the
hyper-edges belonging to the corresponding cut in H.
In other words, the finite capacity cuts in F' correspond
one-to-one to the cuts of H such that they separate the
original vertices in the same way. This is the property
the Yang-Wong transformation is intending to achieve.

It must be mentioned that we could explain the
Yang-Wong transformation by a series of known tech-
niques: See Fig. 4. First, an undirected edge-capacity
hyper-graph (A) is transformed to a vertex-capacity
graph (B) with respect to the equivalence of cut capac-
ity, where the cut is the one that splits the vertices. It
is done by replacing the hyper-edge with a star graph,
where the hyper-edge capacity w in H is transferred
to the capacity of the center vertex z. Second, (B)
is transformed to a vertex-capacity directed graph (C)
by replacing each undirected edge by a patr of edges
of opposite directions. Finally, C is transformed to an
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Figure 4: Principle of the Yang-Wong Transformation

edge-capacity directed graph (D) to a local structure as
described. The cut here is the one that cuts the edges.

Each step is too well-known in network flows and
graph theory. However, as far as the authors know,
[4] and [5] were the first to bridge hyper-graph and
directed graph in terms of flow. Moreover, including
(4], [5] and [6], there have been no references that clarify
explicitly the principles on how an edge-capacity hyper-
graph can stepwise be transformed to an edge-capacity
directed graph, as we did here.

3.2 Flow-Block Candidates

By applying the flow-reachability transformation to
F, we can obtain a graph F’ such that the flow-
reachability of the vertices is embossed.

Procedure 2. (Flow-Reachability : ' — F’ : Step 3 in
Procedure 1.)

Input : Max-Flow computed Flow-Graph F =
(Vp, EF)

QOutput : Directed graph F’ whose strongly con-
nected components correspond to the flow-blocks.

1. Copy all the original vertices of F in F’
2. For each virtual edge e and its local structure

(a) if ep is saturated then

1. let V,, Vi and V,, be the sets of vertices
in F/ where, in F, from which the flow



comes in to ep, goes out from, and nei-
ther, respectively.

ii. Pick two vertices v; and v,, each from V;
and V, respectively

iii. If |V, = 0 then make an edge (v;,v,) in
F/

iv. Else for each vertex v, € V,,, make edges
(vi,vn) and (vp,vo) in F’

v. if |V;] > 1 then connect all of the vertices
in V; by a ring (directed cycle)

vi. if [V,]| > 1 then connect all of the vertices
in V, by a ring

(b) Else

i. connect all of the vertices in V;, by a ring
a

Some examples are shown in Fig. 5. Procedure 2
is very tactical: Tt copies all the original vertices of H
and creates edges that represent the flow-reachability
in F with a maximum flow. The following facts hold.

Theorem 1

1. A non-virtual vertex is reachable, i.e. a directed
path exists, from the other non-virtual verter in F'
if and only if the former is flow-reachable from the
latter in F'.

2. Two non-virtual vertices belong to the same flow-
blocks if and only if they belong to the same
strongly connected component in F'.

3. The graph obtained from F' by contracting each
strongly connected component into a single verter
is M(H).

[}

For example, see Fig. 5. In Case A, any two of
u1, us, v1, and vz are mutually flow-reachable in F' and
they are strongly connected in F’. Also in Case B, v1
is flow-reachable to any other vertex in F, i.e., there is
a directed path to any other vertex in F”.

3.3 Computational Complexity

Along Procedure 1, let us estimate the computational
complexity of our approach in obtaining an exact min-
cut graph.

Step 1 is possible by the search of the edges and ver-
tices of constant times which needs O(n + m) time. In
Step 3, applying flow-reachability transformation can
be done by one time graph search. Step 4, finding the
strongly connected components and their contraction,
are possible in O(n+m) time as well, by the depth-first-
search [12], [13]. Therefore, the total computational

unsaturated
(flow=0)\

Vo={uq, Uz}

Vi ={vy, v}
case B Vi ={ug, V)
case C

Figure 5: Flow-Reachability Transformation: Some
Examples

complexity of Steps 1, 3 and 4 is O(n+m). Then Step
2, to fix a max-flow, will be dominant in the part to
get M (H) from H. One of the fastest algorithm works

“in O(n*m) [11].

The reason why we claim of the computation com-
plexity after Step 2 is that this is the main part of the
improvement in obtaining M (H). In fact we should
note that there has been no comparable proposal to
get an exact M (H).

4 Applications to Sub-Circuit
Extraction

The way a practical circuit is modeled to the graph of

the Extraction problem will be as follows. First of all,



two reference vertices shall be assigned as s and ¢ with
the purpose that ¢ is to be included in the sub-circuit
and s is not.

Once the problem instance is fixed, we apply our way
of constructing the min-cut graph. Assume then that
the min-cut graph is obtained. The exact solution is
as follows. In the beginning, ¢ is only a single vertex
in M(H) which has no outgoing edges. Extract t. Of
all the new sinks born by the deletion of ¢, list all the
combinations. Check the feasibility of each combina-
tion if the sum of weights of ¢ and the chosen vertices
is not violating the size constraint of the sub-circuit to
be extracted. For each feasible combination, by delet-
ing all the sinks, construct a DAG from M (H). Thus
we create a set of Extraction problems. Each time, the
number increases by at most the number of created
sinks.

See an example shown in Fig. 6 where M(H) is
given. The vertices represent subsets of vertices of
hyper-graph H (shown in Fig. 1). The current cut is
C1 which extracts {s}. Deletion of s gives birth to two
sinks v2 and vsz. We have two combinations for further
extraction {vy,v2} or {v1,vs}. The former consists of
5 vertices and the latter of 3. So, if the constraint of
the sub-circuit size is 4 or less, the former branching
is bounded, i.e. pruned. The latter branches on to
{v1,v2, vz} of weight 7, over weighted. Hence we con-
clude that {v1,v,} is the only exactly optimal solution.

The problem in the above strategy is how to decide
5 and t. Here we had to introduce an expert heuristic:
there are many I/O pins and we divide them into two,
s-side and s-side according to the closeness between
pins measured by the shortest path length. And cre-
ated new vertices s and ¢ as the grand source and sink
connected to all the vertices of the s-side and t-side,
respectively.

Reasons we think that the exhaustive search to work
in the Extraction Problem in VLSI design comes from
the belief that the resultant M(H) is small for prac-
tically large circuits. This must be verified by experi-
ments on the industrial data set that is chosen properly
convincing enough to cover the variety in the actual de-
sign.

5 Min-cut Graphs in Experi-
ments

The experiments were to ensure the following items on
the properly chosen data set and constraint.

1. Smallness of M (H)
2. Smallness of computation time.

3. Merit over the the existing one that uses a heuristic
min-cut graph (proposed in [6]).

next sink
candidate(s)

c

current
sink

curent
Vi={s) V4 ={e g}
V2={a,b,c,d} V5={i}
V3={f h} V6 ={t}
C, G, Next possible cuts
Next sink candidate

Ve V2

Figure 6: Proposing Method to Finding a Min-Cut in

The test program, implemented in C, for the exper-
iments (a) reads a circuit net-list and constraints (I/O
number and size limit), (b) create a hyper-graph from
it, (c) apply Yang-Wong transformation, (d) partition
the I/O terminals, (¢) fix a max-flow, (f) apply flow-
reachability transformation, (g) contract its strongly
connected components into single vertices, and then (h)
exhausts the directed cuts. It was tested on a 400MHz
Pentium2 PC with 64MB of memory, under FreeBSD.

See Table 1 featuring the test cases, and Table 2 for
the size of the largest and smallest library cells being
used.

Library Cell Size
max. min. | variety of cells
1000 62 272

Table 2: Cells of the Library : largest and smallest

The test cases are categorized as follows.

A-D, G-O, Q-R : multi-media video decoder
(Adder, DCT, Control sequencer, Interface logic)

E-F, P : micro-processor (Adder, Multiplier)

The first experiment took place to observe (a) the
numbers of the vertices in M(H) (# of flow-blocks),
and (b) time to exhaustively search for a partition (di-
rected cut in M (H)) whose size is the largest under the



fanouts
Case | # cells | # nets | # I/O | max. | avr. size
A 146 210 97 41229 25187
B 294 422 193 41230 48435
C 453 645 289 41229 73365
D 589 845 385 41231 96869
E 938 989 80 108 | 3.54 | 128920
F 1654 1704 79 157 | 3.46 | 218902
G 2180 2205 76 41 | 3.72 | 314768
H 2175 2250 138 329 | 3.46 | 290984
1 2232 2286 88 245 1 3.39 | 277722
J 2317 2446 189 57 | 3.16 | 294744
K 2573 2677 181 180 | 3.57 | 348780
L 2350 2493 203 509 | 3.27 | 310065
M 2527 2596 110 63 | 3.41 | 309402
N 2396 2418 40 486 | 3.16 | 280931
O 2254 2393 268 285 | 3.16 | 292056
P 183 254 84 26 | 2.56 31157
Q 2920 3020 175 557 | 3.27 | 366513
R 10530 | 11844 300 201 | 3.45 | 1469494

Table 1: Features of the Test Data

I/O number and the size constraints of 64 and 25000,
respectively. These constraints were decided based on
our experiences in successful utilization of 10K gate
FPGA. For comparison, we also implemented the Liu-
Wong’s approach. See Table 3 for the result of the first
experiment.

From the results, we can observe that the number of
the flow-blocks are affected by the designs, however, in
most of the cases, they are small compared to the num-
ber of the vertices in the hyper-graph, and the time re-
quired to exhaust for an appropriate min-cut is usually
very short. Therefore, an exhaustive search is consid-
ered practical in real cases. In some cases, we observed
that Liu-Wong’s approach gave a partition whose size is
less than the one obtained by our exact method. This
is because their approach is a heuristic while ours is
exhaustive. Liu and Wong paid for the reduction of
computation cost by the exactness of M(H), while we
showed that exactness and small computation cost can
be achieved at the same time.

6 Concluding Remarks

The use of the min-cut graph has been known very
effective to extract a desired subcircuit when the con-
straint is the smallness of the cut. To find the min-
cut graph of a hyper-graph has been believed to use a
formidable computation cost. This paper showed that
the preceding works had missed one simple fact, i.e.
the flow-reachability of a directed flow graph can be
equivalently transformed to the existence of a directed
path.

After showing how to construct the min-cut graph,

we also showed its application to the sub-circuit extrac-
tion problem for the industrial data and showed that
even an exhaustive search works very well since the size
of the min-cut graph is very small.

The only problem we had not discussed in detail is
to give a way to define the source and sink. Our ad-hoc
idea is just to group the I/O pins embedded in practical
circuits. To give a reasonable way to define s and ¢ is
included in future works.
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