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Abstract In this paper, we present our work on the implementation of 3D geometry engine to bit—
serial FPGA. In 3D geometry transformation, the data processing is required the wide dynamic range and
high accuracy because the object space is very large. Thus, it is necessary to process the ﬂoa.tiixg»point
arithmetic. However, the implementation is very difficult due to its complicated algorithm and structure.
In case of FPGAs, we usually do not get high performance for the limit of their hardware resources. To
solve these problems, we develop the floating-point operation algorithm and architecture with bit-serial
pipelined datapath and the implementation on bit-serial FPGA. As a result, the floating—point adder is
performing at about 89.3 MFLOPS and the 3D geometry transformation is about 7.2 M vertex/sec.
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1 Introduction

Current 3D computer graphics systems require
high speed computing for a large amount of data
and various algorithms. Usually, these processing are
hardware—accelerated. The performance of 3D com-
puter graphics hardware is depended on its operation
speed and how algorithms it supports. In order to
achieve faster and higher quality of graphics, the al-
gorithm of 3D computer graphics is progressing at a
rapid pace. However, as algorithm grows, dedicated
hardwares are out of date due to their low flexibility.
In addition, the design of custom chip takes a long
time and large costs. Our solution of these problems
is the implementation of 3D computer graphics ren-
dering engine on reconfigurable system.

One of the feature of reconfigurable computing
is more application specific adaptation and greater
computational density than general purpose proces-
sors. However, the capability of FPGAs used as re-
configurable device is not sufficient for the require-
ment of current 3D computer graphics. In 3D com-
puter graphics, floating—point operation is necessary
for its dynamic range and accuracy in geometry rep-
resentation and transformation. Effective implemen-
tation of floating—point operations on reconfigurable
system is very hard and expensive because these op-
erations require large area and complicated struc-
ture. There has been several studies about processing
floating-point numbers in reconfigurable device [1]-
[4]. They discussed the implementation of floating—
point units on FPGA, the algorithm that need the
acceleration capabilities of reconfigurable computing
and the alternative formats which retain the benefit
of a large dynamic range. Unfortunately, their re-
sults are not sufficient. In order to archive the high
speed computing on the reconfigurable device, we de-
velop a new FPGA for bit-serial pipeline datapath.
We have successfully shown that our bit-serial FPGA
architecture can achieve near 100% logic utilization
on a number of bit-serial applications and guarantees
a high clock frequency operation [5]. Our proposed
approach is the floating—point operations on this bit—
serial FPGA. We develop the floating—point opera-
tion algorithm and architecture suited for bit-serial
FPGA.

This paper discusses the implementation of 3D
graphics geometry engine on reconfigurable system.
Especially, we focus on high speed geometry transfor-
mation architecture on our bit—serial FPGA. It begins
with an introduction to geometry transformation al-
gorithm and 3D geometry engine architecture. Next,
we propose the bit-serial floating-point format and
the the implementation of floating—point units. Fi-
nally, the performance of 3D geometry engine and
conclusion are presented.
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Figure 1: Geometry Engine System

2 3D Graphics

Generally, the process of 3D graphics is implement-
ed as the graphics rendering pipeline {6]. There are
three stages: application, geometry and rasterizer.
The application stage is software-based implementa-
tion. The rasterizer stage is hardware-accelerated.
The geometry stage is located on general purpose
CPUs, custom chip, or both. In case of the imple-
mentation on CPUs, they have supported geometry
acceleration on the chip.

The major function of application stage is to gen-
erate the 3D object model and to decide the loca-
tions of objects, light sources and viewpoint. The
geometry stage generates the transformed and pro-
jected vertices, colors and texture coordinates. This
stage is further divided into the functional stages:
geometry transformation (model & view transforma-
tion), lighting, projection, clipping and screen map-
ping. The goal of rasterizer stage is generating the
pixels, which have appropriate color to render image
correctly, from a color, depth value, texture coordi-
nates with each vertex (from geometry stage). This
stage handles per—pixel operations (unlikely the ge-
ometry stage is per—vertex operations).

The next section discusses the implementation of
3D geometry engine.

3 Bit-Serial 3D Geometry Engine

3.1 Geometry Transformation

In order to display 3D objects on the screen, ob-
jects are transformed into several different coordinate
system. These transformation is .called “geometry
transformation”. Geometry transformation takes the
following two steps.

1. translation “object coordinate system” into
“world coordinate system”

2. translation “world coordinate system” into
“screen coordinate system”

" The object is composed of several polygons. A ver-

tex of polygon placed on object coordinate system
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Figure 2: Geometry core architecture

detect MSB
o

calc EXP

is given by a vector (Z,,%o,2,)%. A vector on world
coordinate system (Z, Yuw, 2w )’ is given below by

Tw To Zoo
Yw = Mow N Yo + Yoo (1)
Zay (2 Zo0

,where M., is transform matrix and (2.0, %00, 200)*
is O—point on world coordinate system.

A vector on screen coordinate system (z,¥s, 2s)7
is given below as

T Ty = Ty
Ys = Mws - Yw — Yo (2)
Zs Zw — Zy

,where M, is transform matrix and (a:,,,y,,,z,,)T is
position of view point on world coordinate system.

Thus, the transformation object to screen coordi-
nate system derived by equation (1) and (2) is repre-
sented as follows:

Ts T, Ty — Ty
Ys = Mws'Mow' Yo +Mys Yw — Yo
Zs Zo Zy — 2y

This transformation is handled by the floating—
point operations.

3.2 Architecture

Figure 1 shows the architecture of geometry engine
system. The geometry engine contains preprocessor,
two data converter and geometry core. The feature
of each component is discussed as following:

e “Preprocessor” is responsible for the calculation
of the transform matrix (Mys, Mow).

e Fach coordinate vertex is converted from stan-
dard floating—point format to bit—serial floating—
point format by “data converter”.

e Three type of operations, multiplication of ma-
trix, multiplication of matrix and vector and ad-
dition of vector are efficiently implemented on
“geometry core”.

The outputs of “geometry core” converted to stan-
dard floating-point format, if necessary, are trans-
fered to next rendering pipeline stage.

3.3 Geometry Core

The algorithm of geometry transformation indicat-
ed by equation(3) is indicated as the following:

4 N

For every object do {
A= Mws : Mow
B =My (Tu = To, Yoo — Yo, Zw — 20)T

For every verter do {
F=A-(%0,Y0, %)+ B
} .

}
- J

A and B is calculated per object. At nest loop,
F is calculated per vertex composed polygon. This
algorithm is operated with three sequential stages At
first stage to calculate A, the multiplication of matrix
is operated with three passes through the geometry
core. These results are buffered at “M-Regs” through
feedback loop. At next stage, we divide the calcula-
tion of B into following two phases:

Bt =
B

Mys - (ww,ymzw)T
By + Mys - (%v, Yo, zv)T

I

The value of B, is temporarily stored at “V-Regs”,
and then next operation overwrite the result B at
“V-Regs”. At final stage, the geometry core calculate
F with the vertices (o, Y0, 2,)? and buffered data A
and B. Generally, one object is composed of several
hundred vertices. Therefore, the majority of oper-
ation time for geometry transformation spends the
calculation of F, so the preprocess dedicated the cal-
culation A and B is a modicum overhead.

4 Bit—Serial Reconfigurable Architec-
ture

One of the distinctive characteristics of bit-serial
circuits is that the connectivity inside the cell is
dense, while the connectivity between bit-serial cells
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Figure 3: Bit-serial FPGA architecture: left is logic block architecture, middle is external block routing archi-

tecture and right is internal routing architecture.

is sparse. Figure 3 shows the bit-serial FPGA ar-
chitecture. This FPGA is SRAM based architecture
and constructed from logic block, routing block (S,
C block), and I/O block. Our strategy here is to
increase the logic capacity of the logic block and ab-
sorb the dense interconnection inside the logic block
to reduce the inter-block routing resource.

The performance of bit-serial FPGA is summa-
rized by Tablel.

4.1 Logic block

Figure 3(left) shows the logic block architecture.
The two multiplexers in front of the LUTs are tar-
geted mainly for carry-save operations which are
frequently used in bit-serial computations. Pro-
grammable switches connected to inputs a4 and by
control the functionality of the four multiplexers at
the output of LUTs. As a result, 2 LUTs can im-
plement any 5-input functions. The final outputs
do, d1,dz, d3 can either be the direct outputs from the
multiplexers or the outputs from flip-flops. Two flip-
flops are added (inputs ¢y and ¢;) to implement shift
registers which are frequently used in bit-serial oper-
ations to synchronize pipeline. Moreover, one of the
major feature of logic block is that we can implement
16-bit barrel shifter on one LUT. This advantage in-
dicates the high performance due to the reduction of
the external routing for large synchronization regis-
ter.

4.2 Routing block

Large portion of the output signals are only used
inside the same logic block in bit-serial designs. Since
our aim in making the logic block large is to absorb
the feedback routing inside the logic block, we pro-
vide a rich feedback routing resource inside the logic
block. The routing is divided into two-levels : exter-
nal block routing and internal block routing shown in

Table 1: Estimated performance of our bit-serial F-
PGA chip. '
area (LB, SB, CBx2)
area (total)
transistor count

385 x 4072
3,500 x 3, 50042
200k transistors

max. gate/block ~70 gates
max. gate/chip ~4500 gates
clock frequency 156 MHz

(assume 4 manhattan distance routing)

16-bit multiplication (x2) 19.5 MOPS

8-bit multiplication (x4) 78 MOPS
16-bit addition (x64)  624.64 MOPS
8-bit addition (x64)  1.25 GOPS

Figure 3(middle and right). Advantages of our two-
level routing architectures can be summarized as fol-
lows : The large number of input and output signals
of the logic block would create a significant capaci-
tive load due to the drain capacitance of the pass-
transistors on the routing segments. By our routing
scheme, the intermediate routing resource inside the
logic block (hence the two-level routing) enables us to
insert buffers at the logic block pins which effectively
isolates the capacitive load of the drain capacitance
of pass-transistors from the routing segments. The
routing delay through the single-length routing seg-
ment is greatly reduced. This fact also leads to power
reduction.

All logic block outputs can be routed back to
itself without consuming any external routing re-
source. Also, connections between adjacent logic
blocks which frequently occurs in bit-serial circuits
is implemented via C-blocks without consuming any
external routing resource as well. These features are
also not seen in Xilinx 4000 FPGA.
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Figure 5: Bit-serial floating—point adder
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5 Floating Operation on Bit—Serial F-
PGA

The implementation of floating-point operations
requires large area and complicated structure because
of bit alignment of different exponent data and nor-
malization. Especially, in case of FPGAs, this prob-
lem occurs to drastically decrease the performance
because of their physical limitations, low device uti-
lization and low operation frequency. Therefore, it is
difficult to implement floating—point units into real-
time 3D computer graphics rendering pipeline. As so-
lution of these problems, we propose the approach to
implement bit-serial floating—point unit on bit-serial
FPGA.

5.1 Bit—Serial Floating—Point Format

The bit-serial single precision floating-point for-
mat is shown in Figure 4, where F is the fraction (24
bits) and E is the exponent (8 bits). This format
is slightly different from standard floating-point for-
mat (IEEE 754). The fraction is represented by 2's
complement number. The decimal point is implicitly
positioned at the right of MSB. The fraction value
is within the range [—-1,1). The exponent value is
biased to Ey = 127. Therefore, the actual value is
calculated as F x 28— %o,

5.2 Bit—Serial Floating Adder

5.2.1 Algorithm

The algorithm of bit-serial floating adder is shown
in Figure 7. The first step is to choose the num-
ber with the greater magnitude of exponent. If B is
greater than A, we swap A with B. The difference
number m (= E4 — Ep) is calculated. This number

Inputs <

To double (

Addition <

detect & Norm

Rounding(output) | | |

time

Figure 6: Timing chart of bit-serial floating-point
adder .

is used as the input of bit-serial shifter. The next
step is the alignment of fraction. In order to to keep
the data accuracy, the fraction is extended to double
precision and shifted right one too many to avoid the
overflow. In the result, the fraction of A, F, is shift-
ed left N —1 and the fraction of B, Fjg, is shifted left
N — 1~ m. Then, we calculate addition by using 2’s
complement bit-serial double precision adder. The
next step is normalization and rounding. Normaliza-
tion is to shift the result fraction to the left until at
least the value is within range [—1,—0.5) or [0.5,1).
However, this normalization is not necessity to influ-
ence of increasing the data accuracy. We normalize
the data with this strict way for easy converting bit—
serial floating format into standard floating format. If
bit-serial floating point data is not strict normalized,
it is not able to define the data as unique. For exam-
ple, (0.0100)3 x 27! equals to (0.100)2 x2~2. This fact
causes of the complicated implementation of convert-
er. Rounding double precision into single precision
variable is implemented with round-to—nearest-even
as same as standard floating-point format [7]. The
final exponent value is calculated by the result of nor-
malization and rounding steps.

5.2.2 Implementation

A block diagram of bit-serial floating adder is shown
in Figure 5. First of all, “compare EXP” evaluate the
two exponents and calculate the value “m”. “Shift u-
nit” makes the fraction to double precision. Bit—serial
double precision data is represented by two wires.
Therefore, the cycle time to calculate double preci-
sion data equals to that of single precision data. At
the same time, the data is aligned with the difference
in the exponent values “m”. These shifted data is
inputted to bit—serial double precision adder.

A 16-bit bit-serial barrel shifter is implemented
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Figure 7: Algorithm of bit-serial floating—point adder

on one LUT (1/4 CLB) on bit-serial FPGA. We can
avoid to route the signal with external routing. This
feature allow the FPGA to operate with high frequen-
cy without routing penalty.

Figure 6 shows the timing chart of bit—serial
floating-point adder, where N is data length (24 bit-
s). Data is processed with bit-serial pipeline fashion.
The sampling period equals to the data length N and
the latency is 2V + 4. The detection of MSB used as
normalization spend long latency.

Table 2 describes the comparison between Xilinx
XC4085XL FPGA (speed grade "09” which is the
fastest device) [8] and our bit-serial FPGA. Signifi-
cant points in this comparison is in the logic and rout-
ingdelays. While our FPGA uses 0.54 process (0.64
gate length), XC4000XL uses 0.35y process. These
results are due to the optimized logic block and rout-
ing architectures of our bit-serial FPGA. Through-
put is calculated for whole chip area. XC4085XL has
56 x 56 CLBs and our bit-serial FPGA die size is
assumed by lem?.

5.3 Bit—Serial Floating Multiplier

A block diagram of bit-serial floating multiplier is
shown in Figure 8. Bit—serial floating multiplication
is simpler than addition. It is not necessary to align
the data before multiplication. The fractions is calcu-
lated by 2’s complement multiplier. 2’s complement
multiplier is consist of 24 processing elements cascad-
ed into a one dimensional array. Each bit of multiplier
is transmitted through the linear array, and captured

Fout_h
—Fou1

Nomalization

Rounding

F—— hesd_out

—
2's complement bit-serial multiplication array & Cout
Fx Calk Exp.
foad_out
haad

Figure 8: Bit-serial floating—point multiplier

Table 3: Mapping on bit-serial FPGA

Function | Lultiplier Adder Normalization

Exp. | Frac. | Exp. | Frac. | Exp. | Frac.
#CLB 2 24 7 8 3 18
Total 26 15 55

at the corresponding cell. Each bit of the multiplican-
d is transmitted through the linear array, and each
cell calculates the partial product. The output expo-
nent is only calculated by the addition of two inputs.

6 Performance Comparison of 3D
Gemetry Engine

The result of mapping on bit-serial FPGA is shown
in Table 3. Total number of CLB is calculated as
following:

Total = 26x3x34+15%x3x3+ 20x3x3+6
NS AT L w1
multiplier adder normalization&reg

435.

Table 4 describes the performance of “geometry
core”. Here, we compare the performance of the im-
plementation on bit-serial FPGA with the standard
cell based ASIC as same process technology. We can
see from these results that the high operation frequen-
cy of bit-serial implementation is of great advantage
to parallel implementation. In the comparison of F-
PGA and ASIC, the difference of logic density affects
the throughput since the operation frequency is about
the same.

7 Conclusion

In this paper, we propose the implementation of
3D geometry engine on bit-serial FPGA. We have
shown the bit-serial floating—point adder and multi-
plier fitting in bit-serial FPGA handled our original
bit-serial floating—format. We focus on adder imple-
mentation and get the good results as compared to X-
ilinx FPGA. Moreover, we propose the algorithm and




Table 2: Estimated performance of bit-serial floating—point adder

| Device [ Process | CLB count | Logic delay | Routing delay | Frequency | Throughput |
Bit-serial FPGA | 0.5 um 35 2.21 ns 4.17 ns 156.7 MHz | 89.29 MFLOPS
XC4085XL 0.35 pm 207 6.93 ns 61.2 ns 14.68 MHz | 7.06 MFLOPS

Table 4: Performance of geometry core: Chip size is lem?. The process technology for implementation ASIC is

0.5um, 2-metal layer CMOS as same as bit-serial FPGA.

Bit-serial FPGA | ASIC (bit-serial) | ASIC (bit-parallel)
Sampling period [clock] 32 24 1
Latency [clock] 99 196 4
Frequency [MHz] 156 141.1 21.7
Throughput [vertex/sec] 7.15 16.6 10.86

architecture of 3D geometry engine. Actually, the ge-
ometry core is mapped on bit~serial FPGA manually
and the estimation of performance is shown.

Although we do not get a significant performance
over current commercial rendering engine. However,
we have successfully shown good results as implemen-
tation on reconfigurable device with the comparison
of other FPGA.
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