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Abstract The module placement is one of the most important problem in the VLSI design. In order to obtain an area mini-
mizing placement, a numerical number of heuristic approaches are invented. As the number of modules in recent VLSI systems
becomes larger, however, it becomes harder to compute area minimizing placement by heuristics effectively. Therefore, in the
recent VLSI physical design, stochastic methods come to be employed. One of the most effective stochastic methods is the
simulated annealing approach. In this paper, we propose a new neighborhood structure on the solution space and neighborhood
selection scheme for simulated annealing approach of the placement problem with sequence-pair coding scheme. We show that
our proposed method is effective by applying it to a randomly generated module set and MCNC benchmark ami49.
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1. Introduction

The module placement problem has been investigated
in connection with the optimization problem of VLSI
physical design and it is one of the most important sub-
problems. This problem is to place given modules on
the plane without overlaps and its objective is to min-
imize the area of the minimum bounding box. There
are several heuristic approaches for the problem and they
have made a tremendous progress in VLSI technology.
However, as the number of modules in recent VLSI sys-
tems becomes larger, it becomes harder to obtain area
minimizing placement by heuristics. In order to solve
this problem effectively, the stochastic methods such as
simulated annealing approaches and genetic algorithms
come to be employed. Simulated annealing approaches
is applied to module placement together with some en-
coding schemes such as bounded slice-line grid (BSG)
[1], sequence-pair [2], and ordered tree (O-tree) [3].

A sequence-pair is an ordered pair of permutations
of modules and used as an encoding scheme in the
simulated annealing approach to a placement problem.
In a simulated annealing approach, we consider a so-
lution space consisting of placements obtained from a
sequence-pair by some decoding scheme and search the
solution space by traversing neighbor solutions. In the
conventional studies, simulated annealing approaches
always search on the solution space whose neighbor-
hood structures are given by neighborhoods defined in
[2],14].

In simulated annealing approach, if infinite compu-
tation time is allowed, we can reach an optimum with
asymptotic probability one [5] though, in practical im-
plementation with finite computation time, we often fall
into some local optimum or other solutions. Hence, we
need to find a way to escape from undesirable local opti-
mums with high probability in limited computation time
implementation.

In this paper, we propose a new neighborhood struc-
ture of the solution space based on sequence-pair encod-
ing for a simulated annealing approach of the module
placement problem. We also propose a weight func-
tion used to in the neighborhood selection. By the ex-
periment, we show that our proposed neighborhood and
weighted neighborhood selection scheme are effective
on the exploration of the solution space.

2. Preliminaries

Each module m; is a rectangle with its width w; and
height h;. A module m; must be located in a plane such
that its bounding line segments have the vertical or hor-
izontal direction on the zy-plane as shown in Fig. 1.
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Figure 1 An example of a placement.
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A variable r; represents whether the rotation is applied
(r; = 1) or not (r; = 0) to a module m; (see Fig. 1 (a)
and (b)). A module m; is said to be placed if it has z-
and y-coordinates and r; is defined, where (z;,y;) de-
notes the coordinate of the left bottom corner of m; as
shown in Fig. 1. Wecall R = (r1,79,...,75) € {0,1}"
a rotation vector of modules. In order to represent the
lengths of horizontal and vertical segments of placed
modules, we use two functions ‘hor’ and ‘ver’ defined
as hor(i) = w; and ver(i) = h; if r; = 0 (Fig. 1 ()
and hor(i) = h; and ver(f) = w; if ; = 1 (Fig. 1
(b)). Two placed modules m; and m; are said to over-
lap each other if the following four inequalities hold:
z; < zj +hor(j), z; < z; + hor(3), y; < y; + ver(j),
and y; < y; + ver(i). A placement of a module set
M = {m1,mg,...,my} is the set of a tuple (z;, y;, 4)
of all modules m;. A placement is said to be feasible if
no two modules are overlapping. For a feasible place-
ment P of modules my,ma,...,my,, let A(P) be the
area of the minimum rectilinear bounding box includ-
ing all modules, i.e., A(P) = (max;(z; + hor(i)) —
min; z; ) (max; (y; +ver(7)) —min; y;). A feasible place-
ment P is said to be optimal if it is feasible and no other
feasible placement P’ satisfies A(P') < A(P). The ob-
jective of the placement problem is to compute a feasible
placement P minimizing A(P). ‘

A sequence-pair (I';,I'_) is an ordered pair of n
module permutations I'; and I'_ and it is used as an
encoding scheme for some feasible placements. Let
fo(m;) and f_(m;) be the position of m; appearing



in Iy and T, respectively. For example, if Ty =
(mg, m3,ma,m1) then fi(m1) = 4, fr(my) = 1,
films) = 2, and fi(my) = 3. (T4, T_) is used to
represent the following restrictions R1 and R2 of a fea-
sible placement: For two modules m; and m;,

Rl if fy(m;) < fi(my) and f_(ms) < f-(my)
(esp. f+(mi) > fy(my) and f-(mi) > f-(m;)), then
z; + hor (i) £ z; (resp. z; + hor(j} < z;),i.e., m;is at
the left (resp. right) of m;, and

R2 if fi(m;) < fi(my) and f_(mi) > f_(m;)
(resp. f+(mi) > f4(m;) and f_(my) < f_(m;)), then
yi + ver(s) < y; (resp. y; + ver(j) < wy), ie, m; is
below (resp. above) m; (see Fig. 2 (a)).
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Figure 2 Restrictions.

Figure 2 (b) shows a placement which satisfies R1 and
R2 for a sequence-pair {(m1,ma, m3), (M3, m1, m2)).
S = (I'y,T'_, R), a sequence-pair together with a ro-
tation vector, is useful to represent some restrictions of a
placement and we use it as an encoding. We now define
a one-to-one mapping P from such codes S to place-
ments. Consider § = (I'y,T'_, R) of n modules. Under
the decoding scheme we use, the coordinates (z;, y;) of

the left bottom corner of module m; can be computed -

by the following equations:

max{z; + hor(i)| f+ (ms) < f+(my),
o f=(ms) < f-(mj)}

Tj = . .. M
if at least one such 7 exists and

0 if otherwise, and

max{y; + ver(i)|fy (m;) < fi(my),

o f-(mi) > f-(m;)}
Yi = 4 . .. 2)
if at least one such 7 exists and

0 if otherwise,

where the minimum values of z; and y; are both 0. Let
us denote the resultant placement of .S by P(S). Such a
placement can be obtained in O(nlogn) time [6]. It is
known that P(S) is feasible and there exists at least.one
code S whose placement P(S) is opfimal [2]. LetSbe

the (sub-)solution space on which we search by the sim-
ulated annealing approach. A non-optimal solution S is
said to be locally optimal on a neighborhood structure
Ng of S if we cannot reach better solution by traversing
on Ng without visiting worse solution S’ than S, i.e., S’
with A(S") > A(S). For a locally optimal solution S,
the minimum of A’(S") — A(S) is called the depth of S if
we cannot reach better solution from S without travers-
ing at least one solution §” with A(S") = A(S’). The
maximum of the depth over all local optimum solution
S, denoted by d(S), is called the depth of S. A simulated
annealing search described in Fig. 4 in Section 3.1 with
a temperature schedule 7y, 77, .. . on a solution space S
guarantees to reach an optimal solution with asymptotic
probability one [5] if (a) it takes infinite time under the
temperature schedule; (b) the solution space S is finite
and irreducible, (c) there exists an equilibrium distribu-
tion for the transition probability matrix, (d) T; = T;41
and T; > 0 for all 4, (¢) lim; o I; = 0, and

(f) > exp(=d(S)/Ti) = ce.
k=0

3. Neighborhood structure

3.1 Conventional works

We often regard S as a solution instead of P(S). For
some codes S and S, P(S) = P(S’) but, in this case,
we regard that S and S’ are different solutions though
A neighborhood
structure of the solution space can be represented by a
set of neighborhoods. Main types of neighborhoods for
this approach in the conventional studies are described

they represent the same placement.

as follows: Two solutions S and S’ are neighborhoods
of the other if and only if 5 is obtained from S by one
of following operations:

HX+ (—):
and m; and then exchange m; and m; in 'y (') (see
Fig. 3 (a)).
IN+ (—):
f in Ty, put m; to f and the other modules between
f+(m;) and f are shifted by 1 toward f. (m;) (see Fig. 3
(b) and (c)).

FX: (full-exchange) choose two modules m; and m;

(half-exchange) choose two modules m;

(insert) choose a module m; and a position

and then exchange m; and m; inboth ' and T'_.

RT: (rotate) choose one modules m; and rotate it, i.e.,

Ty = 1 —Ti.
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Figure 3 Operations HX+ and IN4-.

The area minimization by the simulated annealing ap-
proach can be described by using temperature schedule
T = (Tp,Ty,...) with T; > Tjyq and lim; 00 T3 = 0
in Fig. 4. Note that, if A(S") £ A(S), Inequality (}) in

INPUT: n modules m;, temperature schedule 7, fin-
ish temperature T, > 0, and initial solution Sg.
OUTPUT: A solution S.
begin
construct an initial solution S randomly.
set1:= 0,5 = Sp,and T := Tp.
while T > T. do
repeat ¢ times do
choose a neighborhood ' of S
choose p with 0 < p < 1 randomly.

4 —_—
it s o (~AL_AD)
S:=5".
end if
end repeate
i:=1+1,T:=T.
end while

end
Figure 4 Simulated Annealing Algorithm.

Fig. 4 is always true. Let X (7;) be the random variable
representing the area A(S) of solution S at temperature
T; in the algorithm with 7, — 0 and Ap; be the mini-
mum area over all solutions. If the transition probability
matrix on the solution space has an equilibrium distribu-
tion, lim;_y0o 73 = 0, and lim;_,o z;;:o exp(—-Tik) =
oo for the depth d of S, then lim;_,o0 X(T;) = Agpt
[5]. However, in a practical implementation, we cannot
spend infinite computation time and we have to simulate
it in finite computation time by some stochastic strategy.
In this paper we set T; = 1%/t T, for some integer ¢ and
real number 7 suth that 0 < » £ 1 and 7, > 0 as many
other researchers do.

3.2 Priority of the neighborhood selection

In this section, we give the priority for each operation
based on Conjecture 1. In our neighborhood selection

scheme, we choose operation O with the probability in
proportion to its priority.

[Conjecture 1] If the difference of evaluations (the
values of objective function) between two adjacent so-
Iutions becomes smaller, simulated annealing may ac-
complish to reach a better solution. (]
Of cause, there may exist many other factors which ef-
fect the search in a sense of efficiency and the assertion
of the conjecture does not always hold.

In the placement problem, however, it is hard to eval-
uate such a difference |A(S1) — A(S2)| for all pairs
of adjacent solutions 57 and Sy since there are an ex-
ponential number of solutions. Therefore, instead of
A(S) = W(S)H(S). we give other evaluations for each
operation using the upper bound of |W (S7) — W (S2)| +
|H(S1) — H(S2)|, where W (S) and H(S) are the verti-
cal and horizontal width of P(S).

For each operation O, we define two types of weights
denoted by D(O) and F(O) which are used in the defi-
nition of priority as follows:

P(0) = F(0) (1~ exp(~v/AuD(0)/T)), (@)
where A}y is the total area of modules.

We first consider HX+ operation for given modules
m; and m;. Let d"%*(m;, m;) be the upper bound of
[W(S1) — W(S2)| + |H(S1) — H(S2)| such that Sy
is obtained from S; by half-exchange operation for m;
and m;. Clearly, the difference is at most hor(s) +
hor(j) + ver(i) + ver(j) = h; + w; + h; + wj.
With little more detailed analysis, we can obtain up-
per bound dHXi(mi,mj) = h; + w; + hj +w; —
min{h;, w;, hj, w;}. For example, if r; = r; = 1 and
H(S;) — H(S1) = w; +w + j, m; and m; are in-
cluded in a horizontal critical path of Sy, and then ev-
ery vertical critical path includes at most one of m,; and
m; (see Fig. 5). D(HX=) is defined as the average of

horizontal
critical path

N
N\

vertical

critical paths

Figure 5 Horizontal and vertical critical
paths.

d®X%(m;, m;) for all pair of two modules m; and m;.



It should be noted that, for operation O, v/ Ay D(0) in
(3) is closely rerated with A(S") — A(S) of (1) in Fig. 4
and, if exp (_@TM> is close to 1, i.e., D(O) is
very small, operation O is accepted with high probabil-
ity. In this case, operation O may work as if every ran-
domly chosen neighborhoods are accepted and, if there
is some operation O’ which is accepted with lower prob-
ability, O has only a small influence. On the other hand,
from Conjecture 1, even though d***(m;,m;) is very
large for some pairs of m; and m;, if there are many
pairs having small d"X*(m;, m;), then we would like
to give high priority to the operation. Therefore, since
the operation with d"**(m;, m;) = 0 makes no effect
on the area optimization, we give the other type of pri-
ority F(HX=) as the average of 1/d%%%(m;, m;) over
non-zero d3%F (m;, m]-) i.e., F(HX+) is defined by

(M) Z f(mi, m;), where
2 ) mim;eM
0 if dXF(my,m;) =0
f(m'hmj) = 1
dHXE(m;, my)

F(HX+) =

if otherwise.

By the similar ways, once dO© () is defined for operation
0, D(0) and F(O) can be defined automatically.

For IN+ operation, upper bound for given m; is de-
noted by d™N* (m;) = w; + h; and

Z fINi {(my),

F(IN£) =
| m,eM

where fIN is defined similarly to f HX+

For FX operation, upper bound for given modules m;
and mn; is given by |hor(¢) —hor(j)|+|ver (i) —ver(j)| £
max{|w; — wj( + ‘hi - h]'|7 [wi - h]I + |hZ - wjl} We
can easily accomplish more detail analysis for this op-
eration, For each pair m; and m; with w; F h; and
w; * hy, there are following two cases: i) hor(i) <
ver(i) and hor(j) < ver(j) or hor(i) > ver(i) and
bor(j) > ver(j), i) hor(s) < ver(:) and hor(j) >
ver(j) or hor(i) > ver(é) and hor(j) < ver(j). There
are same number of solutions for both cases. In order
to consider both cases independently, we introduce two
functions df X (m;,m;) = |w; — w;| + |h; — hy| and
d5*(m;,m;) = |w; — hj| + |w; — hy|. So, the priority
function is defined by

F(FX) =

Z ka mlam]

11
2 M)
("2 mimi €M k=1

where ffX is defined similarly to fH%=,

For RT operation, upper bound for m; is denoted by
d™(my;) = |w; — hy| and so

Z fRT mz

m,GM

where fRT is defined similarly to fEX+,

4. Proposed Methods

4.1 New Neighborhood

We now define new types of neighborhoods by giving
operations constructing them:
RF: choose two modules m; and m; and exchange m;
and m; in both sequence 'y and I'_ and, if (ver(:) —
hor(2)) (ver(5) — hOI‘(])) < 0, then rotate both m; and
mj (e, r:=1-—m; and rj=1-r).
The weights of this operation is given as follows:

d® (mi, m;) = | max{w;, hi} — max{w;, h;}| +
|min{w,~,h'} — min{wj, h;}| and

Z R (mj, m;).

m;ym;EM

F(RF) = I J\QA’I)
Since d®F (m;, m;) < db*(mj, m;), for each pair of m;
and m;, F(RF) < F(FX) if d®" (m;, m;) > 0.

In conventional studies, rotation and reconfiguration
of I'+ are treated separately, and such kinds of neighbor-
hoods are not considered. We can make many other ar-
ranges, e.g., by combining RT with some of HX+, IN=+,
and FX operations, but we omit the details of them for
the lack of space.

4.2 Weighted Neighborhood Structure

In conventional approach, each operation is basically
chosen with same probability. In this paper, we propose
to assign different probabilities to each operation O ac-
cording to their priority F'(O) and D(O) which we de-
fine in this subsection. Let

Q C {HX+,IN+, FX, RF,RT} (C))

be a set of some operations we considered. In order to
guarantee irreducible, RT € €, at least one of HX+ and
IN is included in €2, and || 2 3 under (4).

At a high temperature T', if an operation O is accepted
with probability about 1/2 and another operation O’ with
1 - p with p < 1, then the operation O works as if every
randomly chosen neighborhood is accepted though O’



is meaningful. Therefore, we set such that the expected
value of an operation O to be chosen is concerning to
1—exp (—vAxD(0)/T) which we employ instead of
"1 — p. As mentioned, the priority is given by (3). In
our proposed search of simulated annealing approach,
an operation O € €2 is chosen with probability
Rq(0) = P(0)/ Y P(O"). ©)
0'en
" The expected value of the number of iterations for oper-
ation O at temperature T’ = r ¥/t Ty is tRo (O).

5. Experimental Results

In this section, we give the experimental results of
simulated annealing searches on S under conventional
and our proposed neighborhood structures. We imple-
ment the simulated annealing approach to BenchMark
ami49 and a randomly generated module sets Mjgg,
where a module m; in M1gg is generated satisfying that
100 £ w;, h; < 1000, max{h;/w;,w;/h;} < 3, and
min{h; /w;, w;/h;} £ 3/2. The neighborhood structure
in conventional study is given by = {RT, FX,IN+},
and each operation is chosen with same probability,
where we regard IN+ and IN— as one operation here.
In our method, Q' = {RT,RF,IN+,IN-}, and each
operation is chosen with the probability denoted by (5).
We apply simulated annealing approach 100 times with
parameters 7 = 0.98 and t = 10n, where n = 49 is the
number of modules. We compute the ratio A(S)/Axs of
A(S) to the total area Aps of modules and show the re-
sults in Table 1. Our improved method generates better

Table 1 Experimental results for ami49.

T, = 10° T, = 10°

T. = 10% T, = 10!

Q 94 Q 9]
ave. | 1.0369 | 1.0269 | 1.0320 | 1.0236
best || 1.0227 | 1.0174 || 1.0202 | 1.0153
worst || 1.0573 | 1.0407 | 1.0430 | 1.0310

solutions than the conventional method.

We apply our method 100 times to M99 and we show
the results in Table 2, where we set r = 0.98 and
t = 10n. For Mjgg, our method also generates better
solutions. We also give the best placements for ami49
and Mg in Fig. 6.

6. Conclusion

In this paper, we propose a new neighborhood and a

Table 2 Experimental results for ami49.

T, =10° T, = 108

T, = 10? T, = 10

Q Q' Q a
ave. | 1.0344 | 1.0257 || 1.0318 | 1.0239
best || 1.0273 | 1.0207 || 1.0251 | 1.0178
worst | 1.0447 | 1.0338 || 1.0396 | 1.0309

(a) ami49 (1.015273)
Figure 6 Best Placements.

»

(b) Moo (1.017834)

weight function of transition probability of the neigh-
borhood selection for placement problems with the
sequence-pair encoding scheme. By experimental re-
sults, we show that our proposed scheme is more effec-
tive than that of conventional studies.
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