fHEEA BB HRERE
IPSJ SIG Technical Report

2003—SLDM—112
2003,711,/28

(7)

Program-Based Delay Fault Self-Testing of Processor Cores

Virendra Singh™ ¥, Michiko Inoue', Kewal K Saluja’, and Hideo Fujiwara'

‘Nara Institute of Science & Technology, Ikoma, Nara 630-0192, Japan

{virend-s, kounoe, fujiwara} @is.aist-nara.ac.jp

2University of Wisconsin — Madison, U.S.A
saluja@ece.wisc.edu

*Central Electronics Engineering Research Institute, Pilani, India
viren@ceeri.ernet.in

Abstract

This paper proposes an efficient methodology of delay fault
testing of processor cores using its instruction set. These test
vectors can be applied in the functional mode of operation,
hence, self-testing of processor core becomes possible. A
delay fault will affect the circuit functionality only when it can
be activated in functional mode. There are some paths, which
are never excited in the functional mode of operation; hence
these are functionally untestable paths. The proposed
approach uses a graph theoretic model (represented as an
Instruction Execution Graph) of the datapath and a finite state
machine model of the controller for the elimination of
Junctionally untestable paths at the early stage without
looking into the circuit details and extraction of constraints
for the the paths that can potentially be tested. Path delay
fault model is used. The experimental results on Parwan
processor demonstrate the effectiveness of our method.

1. Introduction

The importance of at-speed delay fault testing has soared in
recent years to keep pace with the increasing speed and
decreasing feature size of processors as aggressive design
methodologies of processors use giga-hertz clock and deep
sub-micron technology. At-speed testing using external tester
is not an economical viable scheme. Structural self-testing
methodology such as Built In Self Test (BIST) has been
considered as an alternative. However, the following
properties of BIST, 1) excessive area and performance
overhead 2) operation in orthogonal test mode 3) requirement
to make circuit BIST ready beforehand, 4) possibility of
excessive power consumption in test mode, and 5) resolution
of various clocking issues, make it unsuitable for the testing of
processor cores especially when a optimized processor core is
embedded deep inside a System-on-a-Chip (SoC). Once a core
is embedded then it is also difficult to access the core for test
application. Functional self-testing resolves these issues as it
is operating in functional mode of operation by using its
instructions. Functional self-test can easily be applied on a
processor core, embedded deep inside an SoC. This paper
focuses on functional self-testing of processor cores.

A number of software based self-test approaches
[3,4,5,6,7,8,9], targeting stuck-at faults, have been proposed.
The approaches proposed by Shen and Abraham [3] and
Batcher and Papachristou [4] are based on instruction
randomization. Both these approaches [3,4] give low fault
coverage due to high level of abstraction and they generate
large code sequence resulting in large test application time.
Chen and Dey [5] used the concept of self-test signature in

" This work was carried out while author was with NAIST, Japan.

which they generate structural tests in the form of self-test
signatures for functional modules by taking constraints into
consideration. Due to pseudorandom nature of this
methodology self-test code size and test application time are
large. Paschalis et. al. [6] use self-test routines for functional
modules based on deterministic test sets for testing datapath of
a processor. Similarly, Krantis et. al. [7,8] proposed a
methodology to tests every functional component of the
processor for all the operations performed by that component
using deterministic test sets. Deterministic nature of these
{6,7,8] approaches lead to reduced test code size but these
methods find difficult to achieve high fault coverage for
complex architectures. Li Chen et al [9] proposed a scalable
methodology based on test program templates which uses
statistical regression method for function mapping.
Approaches [5,6,7,8,9] do not explicitly consider the
controller.

A software based self-test approach targeting delay
faults was proposed by Lai et. al [10,11,12]. This approach,
first classifies a path to be functionally testable or untestable.
The authors argue that delay defects on the functionally
untestable paths will not cause any chip failure. Path
classification is performed by extracting a set of constraints
for the datapath logic and the controller. In constraint
extraction procedure for datapath, all instruction pairs are
enumerated and for each instruction pair all possible vector
pairs that can be applied to the datapath are derived
symbolically. This requires a substantial effort to analyze all
the instructions and all possible pairs of instructions even
though it is not necessary to analyze all the pairs as shown in
this paper. For controller, constraints in terms of legitimate bit
patterns in registers and correlation between control signals
and transition in registers are extracted. Path classification
procedure in controller uses sequential path classification
methodology i.e., in order to classify a path it propagate the
transition forward till Primary Output (PO) and backward till
Primary Input (PI) in multiple time frames under the
constraints. Method proposed in this paper extract the
constraints first on state transition, which eliminate the need
of consideration of multiple time frames. After classification
of paths, constrained Automatic Test Pattern Generator
(ATPG) is used to generate the test patterns for testable paths.
Results on controtler are not reported in [10,11,12]. Lai and
Cheng [13] proposed an approach for delay fault testing of an
SoC using its own embedded processor instructions.

Our methodology uses graph theoretic model of
datapath (represented by Instruction Execution Graph) and
finite state machine mode! of the controller to eliminate the
functionally untestable paths at the carly stage without
considering circuit details. This eliminates a substantial
number of functionally untestable faults. It is also used to
extract the constraints for the paths classified as potentially

testable paths. These extracted constraints are used for test
generation. As the vectors are generated under constraints,
instruction(s) to apply the test vectors can always be found.

However, the method proposed in [10,11,12] considers circuit -

details for path classification and multiple time frames for the
controller.

The paper is organized as follows. Section 2
describes the overview of our work and definitions used.
Sections 3 and 4 describe testing methodology of datapath and
controller respectively. Section 5 discusses test instruction
sequence generation and the experimental results, and finally
the paper concludes with section 6.

2. Overview of proposed work

Our methodology considers datapath and controller separately
as both of these have different design characteristics. The
activities in the datapath are controlled by the controller, thus
the function of the datapath and inputs to the datapah are
constrained by the controller. Hence, only a subset of
structurally applicable test vectors may be applied in
functional mode of operation. Similarly, the controller is also
constrained by state transitions and signals from the datapath,
thus restricting the tests that can be applied to the controller
during functional mode of a processor.

We model datapath by an Instruction Execution Graph
(IE-Graph) that can be constructed from the instruction set
architecture and RT level description of the processor. In our
formulation of the test problem IE-Graph is used to classify
the paths as functionally untestable (FUTP) or potentially
functionally testable paths (PFTP), and to extract the
constraints imposed on the datapath for PFTP paths. First,
constraints on the control signals that can be applied on the
paths between a pair of registers in consecutive cycles are
extracted. Next, constraint on justifiable data inputs (registers)
are extracted. Following these, a combinational constrained
ATPG is used to generate test vectors under the extracted
constraints. Thus, in this approach only those vectors are
generated that can be applied functionally. Further, the search
space is significantly small as only those states are used
during test generation which can cause data transfer to take
place on a path between a pair of registers.

For testing the controller, the constraints are
extracted in the form of state transitions from its RT level
description. These constraints also include the values of status
signals in the status register and instruction code in the
instruction register of the processor. After extracting the
constraints, test generation is performed in two-phases. The
first phase is the preprocessing stage during which all paths
are classified as FUTP or PFTP. The second phase is the
combinational constrained ATPG phase during which tests are
generated for the paths classified as PFTP during the first
phase. As the vectors must be generated with constraints on
the states and inputs to the controller (contents of the
instruction register and status register), the number of time
frames that are required for sequential test generation are
reduced. In the final phase test instructions are generated
using the knowledge of the control signals and contents of the
instruction register. Justification and observation instruction
sequence generation processes are based on heuristics which
minimize the number of instructions and/or the test
application time.

Throughout this paper the following concepts and notation
will be used.

Definition 1: A path [16] is defined as an ordered set of gates
{80 €1, ---» E}, Where g, is a primary input or output from a
FF, and g, is a primary output or input to a FF. Output of a
gate g;is an input to gate g,,; (O<i<n-1).

Definition 2: A path is (enhanced-scan or standard-scan)
structurally testable [10] if there exists a structural test for the
path, which can be applied through the (enhanced or standard)
full-scan chain.

Definition 3: A path is functionally testable [10] if there exists
a functional test for that path, otherwise the path is
functionally untestable.

A functional two-pattern test does not exist to test a path
implies that there does not exist an instruction or an
instruction sequence to apply the required test in functional
mode of operation. Clearly, functionally untestable paths are
never activated in normal (functional) operational mode and
we need not target these paths in our approach.

We use the following notation to represent signal values.

c: represents a value that does not change in two consecutive
timeframes, i.e, it represents a stable O or a stable 1 value in
two time frames.

x: represents a bit that can be assigned either a logic 0 or a
logic 1 value at will.

d: represents bit which is not cared by state transition. It is the
same as X, except that legitimate bit pattern in the register has
to be justified.

R: represents rising transition.

F: represents falling transition.

A constraint can be represented by a vector pair, say P, and
the elements of Pcan be 0, 1, x, ¢, or d.

Definition 4: A Constraint P is said to cover a constraint Q if P
=Q or Q can be obtained from P by assigning 0 and 1 values
tox’sinP.

3. Datapath

In this section, we consider paths relevant to data transfer
between registers in the datapath. The other paths are treated
in the next section. The paths, which are going through the
logic in the controller, are considered in the next section, even
if they start from and end at some registers in the datapath.

Datapath is modeled by an IE-Graph. This is based on
the concept of S-Graph proposed in [1, 2]. However, unlike S-
Graph, the IE-Graph contains information about data transfer
activities associated with an instruction as well as the state
during which a given action takes place. IE-Graph is
constructed from the instruction set architecture and register
transfer level description and includes architecture registers of
the datapath.

Nodes of the IE-Graph are (i) registers, (ii) two special
nodes, IN and OUT, which model external world such as
memory and /O devices, (iii) part of registers which can be
independently readable and writable, and (iv) equivalent
registers (set of registers which behave in the same way with
instruction set, as defined by [2]), such as registers in a
register file. A directed edge between two nodes is drawn iff
there exists at least one instruction which is responsible to
transfer data (with or without manipulation) over the paths
between two nodes (registers). Each edge is marked with a set
of [state, instruction(s)] pairs, which are responsible for the
data transfer between the pair of nodes.

Partial IE-Graph of Parwan Processor [15] is shown in Figure
1. Complete graph is given in {17]. Parwan Processor is an
accumulator based 8-bit processor with 12-bit address bus. It
has 17 instructions, listed in Table 1, and it supports both
direct and indirect addressing modes.

Table 1. Instruction set of Parwan processor

I.LDA 4.SUB 7.JSR 10.BRA_Z 13.CLA 16.ASL
2.AND 5.JMP 8.BRA_V II.BRAN [14CMA 17.ASR
3.ADD 6.STA 9.BRA_C 12.NOP 15.CMC

{[s6: 114]} @

{[s3, 3406271,
[s6, 1141}

[s6, 1141}

{[s3 his]}

{[s3, Lisa7], {[s6, L}
Ise,lial}

Fig 1. Partial IE-Graph of Parwan processor

Test vector generation process uses instruction set
architecture, RT level description, and gate level netlist. It is a
two-step process. The first step is constraint extraction process
and the second step is test vector generation process.

3.1 Extraction of constraints

There are two types of constraints imposed on the
datapath by the controller. (i) Control constraints, and (ii) Data
constraints. Control constraints are the constraints on control
signals, which are responsible to transfer data between two
registers. These constraints are obtained from IE-Graph and
RT level description. Data constraints are the constraints on
the justifiable data in the registers under control constraints,
which can be obtained using RT level description.

Definition 5: Let there be an edge from node R, to R, marked
with [s;, I,]. The marked state s, is defined as a latching state
for the paths represented by that edge.

Data transfer activity from register R; to R, takes place in state
s; during the execution of instruction I, and register R, will be
latched. Hence, state s, is defined as a]atchmg state.

Lemma 1: Let <V, V,> be a test vector pair for a path from

register R; to a register R, where test vector V, is followed by

V, and the edge between these registers is marked with a set

of state-instruction pairs {[s, I;]}. This vector pair can be a

test vector pair in functional mode only if there exists at least

one state-instruction pair [s,, L,] € {[s;, I,]}, such that

(i) vector V, can be applied in the latching state s; of the
mstrucuonl and

(ii) vector V, an be applied in the state just before the
latching state s, of the instruction L.

Note that every instruction is a sequence of state transitions
and the latching state(s) in this sequence for a register pair is
well defined. However, if the latching state happens to be the
very first state of an instruction then the last state of every
instruction needs to be considered as the state that
immediately precedes the latching state.

During the latching state s, data transfer (with or without
manipulation) from register R; to R, takes place and the result

is latched in register R . Therefore, we can apply the second
vector only in the latching state (say s) and the first vector
must be applied in a state just before the latching state (say s).
Two consecutive states s. and s, give the control constraints,
and control signals in tﬁese states during the execution of
instruction(s) marked with the latching state are obtained from
RT level description. Constraints on the states during which
we can apply the test vectors <V, V> take care of
justification of the control signals in the functional mode of
testing. Data constraints in the form of justifiable data in the
input register of the register pair and other registers required
for the execution of marked instruction are obtained from RT
level description.

Lemma 2: Paths from register R to R are functionally
untestable if the following conditions exist,
1. R;is notan IN node, and
2. R, has no incoming edge marked with the state just
before the latching state (s)) of the instruction I, for
any [s,1] marked on the edge (R;, R,).

If conditions stated in Lemma 2 exist then transition cannot be
launched from register R, Hence, the paths between a register
pair R;and R are FUTP. Otherwise, these paths are classified
as PFTP. We need to extract the data constraints for the
potentially functionally testable paths. Covering relation,
defined in section 2, helps reduce the number of constraints.

Example 1. Constraints on paths between AC and AC in
Parwan processor

The edge between nodes AC and AC is marked with {[s,, (I,
w Lsin) [8e 1,1}, as shown in Figure 1. AC is neither an IN
node nor it has any incoming edge which is marked with just
previous state of its latching state s3 or s¢. Therefore, using
Lemma 2 we can conclude that paths from AC to AC are
functionally untestable.

Example 2: Paths from IN to AC

The edge between nodes IN and AC is marked with [s, I], as
shown in Figure 1. These paths are PFTP in accordance with
Lemma 2, as input node is an IN node, and the latching state
for these paths is s,. Therefore, control constraints are the
control signals generated in state s, or s, followed by s for the
instructions I, I, I, or I,. This is obtained from IE- -Graph and
RT level descnpuon Data constraints can be obtained in the
state s, followed by state s¢ or state s5 followed by s, for the
instructions I, L, I, and I,. Data constraints for the instruction
I, are shown in Table 2. Here we assume that when input to a
combinational logic is in high impedance state then it can hold
the logic value that is applied before the high impedance state.
Parwan processor uses tristate buses which are responsible for
the constraints on IN node.

Table 2. Data constraints for the paths between IN and AC

State I, (ADD)

ALU SHU IN AC

ctrl ctrl (other i/p)
S, 000 00 XXXX_XXXX XXXX_XXXX
Se 101 00 XXXX_XXXX CCCC_cece

For instruction I,, both control constraints, s, followed by S
and s, followed by s, are identical. Hence, using the covering
relation one of thesé two constraints can be eliminated. All
other constraints are extracted similarly.

3.2 Test vector generation procedure

Constrained ATPG is used to generate the test
vectors for the PFTP paths under the extracted constraints.
Path lists between a register pair and their corresponding

constraints are provided as inputs to an ATPG along with gate
level netlist and it returns the test vectors for the testable path.

Procedures to extract the constraints and test generation
is given in Figure 2. This procedure systematically extracts the
constraints using IE-Graph and uses constrained ATPG to
generate the test vectors.

Constraint Extraction Procedure
1. Constraint path pair set W = @
2. fornodes R, (i=1ton) { //thereare n nodes in IE-Graph //
3. for each edge (R, R) (=1tom){
// there are m edges from node R,/

4. if paths are PFTP then { // (using Lemma 2) //

5. P = Set of all paths between R and R,

6. C, = Set of constraints for the paths from
node R, to node R

7. w=wu(l(C, P,

8. }

9.)

10.}

Test Generation Procedure
Constrained ATPG process
Input : Constraint path pair set W, Gate level net list
Qutput : Set of testable path with their test vector pairs

Fig 2. Constraint extraction and Test generation Procedures

4. Controller

Controller is a sequential circuit that is normally implemented
as Mealy type or Moore type finite state machine. In this
section, we treat all the paths that go through the logic in the
controller. Test vectors applicable in functional mode of
operation to the controller are restricted by the state
transitions. If we never find a sequence of valid state
transitions which could create a transition and propagate it
along a path then that path is a functionally untestable path,
even though that may be structurally testable. Therefore, we
extract constraints on state transitions prior to test generation.

4.1 Extraction of constraints

Change of state of controller is determined by the values
in registers (IR and SR), inputs and present state. Input from
registers IR and SR (i.e., registers other than the present state
register (PSR)) are treated as Constrained Primary Input
(CPI). Therefore, we need to extract two types of constraints
(i) constraints on state transition, and (ii) constraint on
legitimate values in IR and SR registers, as these are treated as
constrained primary input.

(i) Constraints on state transitions

Constraints on state transition can be extracted by extracting
possible valid state transition under legitimate values in IR,
SR and input, by using instruction set architecture and RT
level description. We show it using Parwan processor as an
example. Table 3 shows a part of the state transition table of
Parwan processor.

The Table 3 shows that when present state is s, then next
state will be either s, or s,depending on the value of input, and
independent of values in IR and SR registers. During these
state transitions (s, to s, or s,) register IR and SR can have any
legitimate value in the present state (s,) and must have the
same values in next state (s; or s,). Hence, we cannot launch
transition from IR and SR during these state transitions. When
present state is s, then next state is always s;. IR can have any
legitimate value in present state (s,) as well as in next state
(s,). Therefore, transition can be launched from IR during the
state transition s 1O S3.

Table 3. State transition table of Parwan processor (partial)

PS | NS | IR (PS) IR (NS) SR SR In(PS)
: (PS) | (NS) | {Intpt.}
s S1 dddd_dddd | ccce_ccee dddd | cccc 1
) dddd_dddd | ccec_cece dddd [cccc | O
Ss S3 dddd_dddd | Oxxx_xxxx dddd [ccecc | d
100x_xxxx_ | dddd | cccc | d
101x_xxxx_| dddd | cccc | d
110x_xxxx | dddd | ccec | d
1110_0000 | dddd | ecccc | d
1110 0001 | dddd | ccec | d
1110_0010 | dddd | ccce | d
1110_0100 | dddd | cccc | d
1110_1000 | dddd | ccec | d
1110_1001 dddd | ccce d

(i) Constraints on legitimate values in IR and SR register

(registers other than the present state register):
A set of legitimate values in the registers other than the
present state register can be obtained from its instruction set
architecture and RT level description. For example, IR of
Parwan processor can have some of the legitimate bit patterns
which are specified as {IR, <Oxxx_xxxx, 10XX_Xxxx,
110x_xxxx, 1111_0100, 1111_0010, 1111_0001, 1110_0000,
1110_0001, 1110_0010, 1110_0100, 1110_1000,
1110_1001>}.

4.2 Test generation process

Test generation process is a two-phase process which
uses extracted constraints. The first phase is the preprocessing
phase, which classifies paths as PFTP or FUTP. Functionally
untestable paths are removed from the path list. The second
phase generates the test vectors for PFTP paths if these are
functionally testable under the extracted constraints.

Phase 1: Preprocessing
Preprocessing classifies a path as PFTP or FUTP by using
state transition diagram and gate level implementation.
There are three types of paths in a controller

1. PSRtoPSR

2. Primary input or constraint primary input (registers

IR and SR) to present state register (PSR)

3. PL CP}, or PSR to a register in datapath.
Paths from PSR to PSR are only responsible for sequential
behavior of the controller circuit. For preprocessing, we
construct a table that shows transition on bits in PSR and other
registers with state transitions. Table 4 shows transition on
bits in PSR with state transitions for Parwan processor when
states are binary encoded.

Table 4. Transition on bits in PSR with state transition
(Parwan Processor
bit S, s, |'s, |s, s, | s, s, |sg |8
b, | R S,

F s,
b, | R S, 8, S,

F S, S, 8,
b | R s,

F S, 8, S,
b, | R|s S, S, S,

F s, S8, S, s, s,

This table shows that there can be rising transition on bit b,
only when there is a state transition from state sy to s¢. There
can be falling transition on b; only when there is a state
transition from state sy to s,.

Lemma 3: Paths between bit i in register R, and bit j in register

R, (registers R, and R, need not be dift]erent) in controller

circuit are functionally untestable paths for a transition (rising

or falling) if

(i) there does not exist a valid state transition s, to s, to
launch the transition at bit i, or

(ii) there does not exist a state transition s, to sq which can
receive the launched transition or its inverse (receive
falling transition when rising is launched) at bit j, such
that s, = s,,.

A path is functionally testable if we can create a transition and
propagate its effect along the path. If the conditions stated in
Lemma 3 exist then we either cannot launch a transition or
cannot propagate the created transition. Hence, the paths
between bit i in register R, and bit j in register R, are FUTPs.
Otherwise, these paths are classified as PFTP as transition can
be created and may be propagated if values in other registers
are justifiable. We also get precise constraints under which
these paths can be tested using state transition table.

1. PSR to PSR path classification (Paths from controller to
controller):

A path between bit i and bit j in PSR can be classified as
follows for rising transition, using Lemma 3. We consider 3
consecutive time frames as shown in following table.
Activities at bit i and j in PSR and required state transitions
are listed in Table 5. These paths are PFTP iff either s, to s, to
$;, Or 8,10 8, 10 s, state transition sequence exists.

Table 5. Activities at biti and j in PSR

Time frame | k k+1 k+2
bit i 0 1 X

bit j X 0 (1) 1(0)
state Sm Sy((sp) s,(sy)

Example 3: PSR to PSR paths classification in Parwan
processor when states are binary encoded. Table 3 shows
transition on bits in PSR with state transitions. Paths from b,
to b, (for rising transition) are classified as FUTP because no
one state transition sequence exists to test these paths, where
as paths from b, to b, (for falling transition) are classified as a
PFTP because a state transition sequence S, t0 S, to s, €xists.
State transition sequence s, to s, to s, is an exact constraint for
these paths (b, to by, falling transition) under which these can
be a tested if other values are justifiable. Similarly, we can
find out all PFTPs, which are the potential candidates for the
next phase.

2. Paths from PI or CPI to bit i in PSR classification(Paths

from input or datapath to controller):

(i) Paths from PI to bit i in PSR are classified as PFTP, iff
there exists a state sequence (s, to s;), which can receive
a transition at bit i.

(i) Paths from CPI to bit i in PSR are classified as PFTP, iff
there exist a valid state transition (s, to s) to create a
transition at CPI (register IR or SR) and there exists a
valid state transition (s, to s) at bit i of PSR (according to
Lemma 2)

3. Paths from CPI or PSR to a register in datapath (Paths
from controller to datapath) are classified as PFTP, iff

(i) there exists a state sequence (s to s,) which can launch a
transition at bit i in PSR or CPI, and

(ii) the register in the datapath, where these paths terminate,
has an incoming edge, marked with state s, in IE-Graph
and state s and s, are two consecutive states of the
marked instruction I .

Phase 2: Test generation

A constrained combinational ATPG is used to generate the
test vectors for the paths, which are, classified as potentially
functionally testable paths under the extracted constraints.
ATPG is given with a set of PFTP along with their respective
constraints. ATPG will return the test vectors if a path is
testable under constraints.

This approach extracts the constraints in the form of state
transitions and classifies the paths as functionally untestable
or potentially functionally testable. Functionally untestable
paths are removed from the path list. It uses combinational
constraint ATPG to generate test vectors. Therefore, we need
not to consider multiple time frames for all the paths like a
sequential ATPG, as sequential behavior is taken care by the
state transition in our approach, which in turn reduces the
complexity of test generation.

5. Test instruction sequence generation and
experimental results

The generated test vector pairs as explained in the preceding
section are assigned to control signals and registers. Control
signals and value(s) in IR in two consecutive time frames give
the test instruction(s). Data in registers and in memory, which
will be used by the test instruction, must be justified, using
justification instruction. The result from the output register
must be transferred to memory using observation instructions.
For example, vector pairs are (V1 = {ALU ctrl=000, SHU
ctrl=00, AC=48H, IN=24H}, V2 = {ALU ctrl=111, SHU
ctrl=00, AC=48H, IN=04}). This shows that the test
instruction will be SUB instruction and the value at x24H
must be 04H. Value in AC must be 48H which can be justified
by using LDA mem[1], and the result from AC is transferred
using STA mem([2]. So, we need three instructions LDA
mem[1], SUB mem([3], and STA mem[2)]. Heuristics can be
used for instruction justification process in order to reduce the
test program size or test application time.

We have applied our methodology to Parwan processor
[15]. The synthesized version of the Parwan processor
contains 888 gates and 53 flip-flops. An IE-Graph is
constructed and functionally untestable paths have been
detected. Paths from AC to AC, AC to SR, AC to Out, SR to
SR, SR to Out and PC to PC are found to be untestable. We
extract constraints for rest of the paths using IE-Graph and RT
level description. Similarly, a state transition table has been
constructed which shows the constraints on controller. We
generated test patterns for Non Robust (NR) [16] and
Functional Sensitizable (FS)[16] paths under the extracted
constraints manually, as no one commercially available ATPG
handles our constraints. Here we consider, the paths which are
starting from some register in datapath (e.g., IR or SR) going
through the controller and terminating at some register in
datapath, as a part of the controller. Results are shown in the
table 6. Test instructions are generated manually.

The results show that 39% of functionally untestable
paths in data path and 32% functionally untestable paths in
controller are eliminated during the first phase without using
circuit details.

Table 6: Results of Parwan processor

Datapath Controller

NR FS NR FS
Total Path 5012 | 5012 | 48,484 | 48,484
Faults 10,024 | 10,024 | 96,968 | 96,968
Faults declared | 3,902 | 3,902 | 31,836 | 31,836
untestable in first phase*
Functionally testable | 1,218 | 1,218 | 2344 | 3,110
paths
Percentage of 12.1 12.1 24 32
functionally testable
paths

* These paths are declared functionally untestable using RT
level description and instruction set architecture only.

Table 7: Comparison with earlier work

Percentage of functionally testable paths
Our work Lai et al [11]’s work
Datapath NR 12.1 3.7
FS 12.1 -
Controller | NR 24 -
FS 32 ---

The results also show that our methodology generates the test
patterns for more number of faults in datapath as compared to
Lai & Cheng [11] because we are considering at
microinstruction level during the extraction of constraints for
the potentially testable paths. Note that [11] is using different
synthesized version of Parwan processor with 168 sequential
elements in order to separate out controller and datapath to
make it better testable and reduction of number of paths,
where as we are using original Parwan processor. The results
for the controller are not shown in Lai & Cheng [11]. This
approach can be extended for pipelined architecture by
considering pipeline registers in IE-Graph.

6. Conclusion

A systematic approach for the delay fault testing of processor
core using its instruction set has been presented in this paper.
A graph theoretic model for data path has been developed.
This model is used with the RT level description to eliminate
the functionally untestable paths at the early stage and
extraction of constraints. Controller is modeled as a finite state
machine and constraints on state transitions are extracted. This
will eliminate the need of multiple time frame consideration
for the test generation, as we extracted the constraints on state
transitions, hence reduces the test generation complexity. Our
experimental results show that our test generation process can
efficiently generate the test vector for functionally testable
paths which can be applied by test instructions. Our future
work includes automation of the proposed method, extension
of this approach for complex architectures, and application of
some efficient heuristics for the generation of justification
instruction, which can minimize the test size or test
application time.

Acknowledgement
This work was supported in part by Semiconductor

Technology Academic Research Center (STARC) under the
Research Project and in part by Japan Society for the

Promotion of Science (JSPS) under Grants-in-Aid for
Scientific Research B (2) (No. 15300018).

References

{1]. SM. Thatte and J.A. Abraham, “Test generation for
Microprocessors”, IEEE Trans. on Computers, Vol. C-29,
No.6, June 1980, pp. 429-441.

[2]. D. Brahme and J.A. Abraham, “Functional Testing of
Microprocessors”, IEEE Trans. on Computers, vol. 33, No.
6, June 1984, pp. 475-484.

[3]. J. Shen and J.A. Abraham, “Native Mode Functional Test
Generation for Processors with Applications to Self Test and
Design Validation”, in Proc. of the International Test
Conference 1998, pp. 990-999.

[4]. K. Batcher and C. Papachristou, “Instruction Randomization
Self Test for Processor Cores” in Proc. of the VLSI Test
Symposium 1999, pp. 34-40.

[5]. Li Chen, and Sujit Dey, “Software-Based Self-Testing
Methodology for Processor Cores”, IEEE Trans. on CAD of
Integrated Circuits and Systems, Vol. 20, No.3, March 2001,
pp- 369-380.

[6]. A. Paschalis, D. Gizopoulos, N. Krantis, M. Psarakis, and Y.
Zorian, “Deterministic Software-Based Self-Testing of
Embedded Processor Cores”, Design Automation & Test in
Europe 2001, Munich, Germany, March 2001, pp 92-96.

[7]. N. Krantis, D. Gizopoulos, A. Paschalis, and Y. Zorian,
“Instruction-Based Self-Testing of Processor Cores”, in
Proc. of the VLSI Test Symposium 2002, pp 223-228.

[8]. N. Krantis, A. Paschalis, D. Gizopoulos, and Y. Zorian,
“Instruction-Based Self-Testing of Processor Cores”, Journal
of Electronic Testing: Theory and Application (JETTA) 19,
2003, pp 103-112.

[9). Li Chen, S. Ravi, A. Raghunath, and S. Dey, “A Scalable
Software-Based Self-Test Methodology for Programmable
Processors”, Proc. Design Automation Conference (DAC
03), ACM Press, pp. 548-553.

[10].W.-C. Lai, A. Krstic, and K.-T. Cheng, “On Testing the Path
Delay Faults of a Microprocessor Using its Instruction Set”,
Proc. of the VLSI Test Symposium 2000, pp. 15-20.

[11].W.-C. Lai, A. Kirstic, and K.-T. Cheng, “Test Program
Synthesis for Path Delay Faults in Microprocessor Cores”, in
Proc. of International Test Conference 2000, pp 1080-1089.

[12].W.-C. Lai, A.Krstic, and K.-T. Cheng, “Functionally
Testable Path Delay Faults on a Microprocessor”, IEEE
Design & Test of Computers, Oct-Dec 2000, pp 6-14.

[13] W.-C. Lai, and K.-T. Cheng, “Instruction-Level DFT for
Testing Processor and IP Cores in System-on-a-Chip”, Proc.
of the Design Automation Conference (DAC 01), ACM
Press, NY, 2001, pp. 59-64.

[14].A. Krstic, Li Chen, W.-C. Lai, K.-T. Cheng, and Sujit Dey, *
Embedded Software-Based Self-Test for Programmable
Core-Based Designs”, IEEE Design & Test of Computers,
July-August 2002, pp. 18-27.

[15).Z. Navabi, VHDL: Analysis and Modeling of Digital
Systems, McGraw-Hill, New York, 1997.

[16].A. Krstic and K.-T. Cheng, Delay fault testing for VLSI
circuits, Kluwer Academic Publishers, 1998.

[17].V. Singh, M. Inoue, K.K. Saluja, and H. Fujiwara,
“Software-Based Delay Fault Testing of Processor Cores”,
NAIST technical report NAIST-IS-TR2003006, May 2003.
http:/fisw3.aist-nara.ac.jp/Contents/Research-en/Research-
en.html

