tHEEA HRLEYS PSS
[PSJ SIG Technical Report

2004—SLDM-115 (1)
2004.5/°27

PERI—2 U v RBEICED S EIRRERER
Marcelo E. KATHARAT #&A Est

T BEBRRFRERLEMARMER I FER T 466-8603 &G BRHTRERK AEHE
E-mail: {{mkaihara,takagi}@takagi.nuie.nagoya-u.ac.jp

HS5FEL VISIERMZOBARRREAREZEETS. BRERIEI—7 Uy Fik, REZBEORETINIVX
LAEEVIAVRERETL. EROREZEOBRELMBREORVELTHD. TOIAUREIIHLERL
FEST7 MUOFHEICETL. Tho5DEEREY b7 bOMMBER EOBMTEBEDRVIRL TIT). EXK20H%
EfEF4 Oy hEBEEZAVSZIEZEIDETOMBREZTLTERELIZTD. BRI HARERERKIL, H
AELWE Y hASA ARBEZEFD, nEy FOBIRZERE, TOTAVRERUVEARRERZ O(n) 70w 7912
VNTCEITTS. 70y 791 7 VOESRn ZEELEW, T IRHAZRREERIT, T TAVEIHEDIEE
B, BEOHKZREOBEHMAZRERKEN 4 IR LEBDLDDIRIN—KI TR TEETEZS.
-0~ HARKKE. MARE. FRBRE, TE2IAVTNITVXA, HEI—-2) v RPN TU XL N—R
D7 7NIY XL, VLSI 7L TYU XA

A Multiplier/Divider for Modular Arithmetic Based on the Extended
Euclidean Algorithm

Marcelo E. KATHARA' and Naofumi TAKAGI!

t Department of Information Engineering,
Nagoya University, Nagoya-shi, 464-8603 Japan
E-mail: {{mkaihara,takagi}@takagi.nuie.nagoya-u.ac.jp

Abstract We propose a multiplier/divider for modular arithmetic suitable for VLSI realization. It is based on our
newly proposed combined algorithm for modular multiplication and division. It performs modular division, Mont-
gomery’s modular multiplication and ordinary modular multiplication. Modular division is based on the extended
Euclidean algorithm. Montgomery’s modular multiplication is based on our newly proposed method consisting of
processing the multiplier from the most significant digit first. The ordinary modular multiplication is based on
conventional doubling and adding procedures. The three operations are carried out through iteration of simple
operations such as shifts and addition/subtractions. The radix-2 signed-digit representation is employed so that
all additions and subtractions are performed without carry propagation. The multiplier/divider for modular arith-
metic has a linear array structure with a bit-slice feature and carries out n-bit modular multiplication/division in
O(n) clock cycles, where the length of the clock cycle is constant and independent of n. The multiplier/divider
can be implemented with much smaller hardware than the necessary to implement ordinary modular multiplier,
Montgomery’s modular multiplier and divider separately.

Key words modular arithmetic, modular multiplication, modular division, Montgomery’s algorithm, extended
Euclidean algorithm, hardware algorithm, VLSI algorithm

1. Introducti In this paper, we propose a multiplier/divider for modular
» miroduction arithmetic suitable for VLSI realization. It is based on our
newly proposed combined algorithm for modular arithmetic

which is efficient in hardware requirements. It performs mod-

Modular multiplication and modular division are basic op-
erations in abstract algebra and play important roles in pro-

cessing many public-key cryptosystems. For example they
are used in RSA[1] and ElGamal [2] cyrptosystems.

Considering the need of PCs and mobile devices to man-
age several security protocols, and the great demand in tech-
nology to shrink hardware to reduce fabrication costs, it is
important to develop a modular multiplier/divider that can
be implemented with reduced hardware requirements.

ular division, Montgomery’s modular multiplication and or-
dinary modular multiplication. Modular division is based
on the extended Euclidean algorithm. The original division
algorithm [3) has been improved to reduce hardware require-
ments. Montgomery’s modular multiplication is based on our
newly proposed method consisting of processing the multi-
plier from the most significant digit first. This method en-

1

ables to use the same hardware to perform Montgomery’s
modular multiplication. The ordinary modular multiplica-
tion is based on conventional doubling and adding procedures
and it can also be computed with the same hardware. Hence,
the three operations share almost all the same hardware com-
ponents reducing considerably hardware requirements. The
three operations are carried out through iterations of simple
operations such as shifts and addition/subtractions.

A modular multiplier/divider based on our proposed algo-
rithm has a linear array structure with a bit-slice feature and
is suitable for VLSI . The amount of hardware of an n-bit
modular multiplier/divider is proportional to n. It performs
an n-bit modular multiplication/division in O{n} clock cycles
where the length of clock cycle is constant independent of n.
Almost all the hardware components in VLSI algorithm are
shared reducing considerably hardware requirements.

In order to compare hardware requirements between the
proposed multiplier/divider, and a modular divider based
on the algorithm proposed in[3], a Montgomery’s modular
multiplier based on our new method described above and an
ordinary modular multiplier based on conventional doubling
and adding procedures, we designed them and estimated the
circuit areas. The area of the modular multiplier/divider re-
sulted practically the same to the area of the modular divider
based on the original division algorithm [3] and much smaller
that the sum of areas of the ordinary modular multiplier, the
Montgomery’s modular multiplier and the modular divider
implemented separately with delays remaining practically to
the same value.

2. Preliminaries

2.1 Extended Euclidean Algorithm for Modular
Division

Extended Euclidean Algorithm is an efficient way of cal-
culating modular division. Consider the residue class field of
integers with an odd prime modulus M. Let X and Y (% 0)
be elements of the field. The algorithm calculates Z(< M)
such that Z = X/Y (mod M) (the algorithm also works
with an odd number M and Y relatively prime to M).

It performs modular division by intertwining a procedure
for finding the modular quotient with that for calculating
ged(Y, M).

[Algorithm 1]
(Extended Euclidean Algorithm)
Function: Modular Division
Inputs: M: 27 < M < 2"
X, Y:0X <M, 0<Y<M
Output: Z = X/Y mod M
Algorithm:
A=M;B:=Y;U:=0;,V =X,
while B+ 1 do
Choose Q so that |4 — B Q| < |BJ;
A:=A-B-@
Calculate U’ which satisfies
U=U-V -Q (modM) and U] < M;

A:=8B;B:=A,
U=v;,v:=u
endwhile

if B= ~1 then Z' := -V; else Z’ := V; endif

if Z' < 0then Z := Z' + M else Z := Z'; endif
output Z as the result;

A (A’) and B are involved in the calculation of GCD and
are allowed to be negative. U (') and V are used in the
algorithm for calculating the quotient and are also allowed
to be negative. VxY = Bx X (mod M) always holds.
Since the final B satisfies |[B| =1, Z’ xY = X (mod M).
Since |[V| < M always holds, —-M < Z' < M. Therefore,
ZxY =X (modM)and0 < Z < M hold. Namely, Z is
the quotient of X/Y modulo M.

2.2 Modular Multiplication

2.2.1 Ordinary Modular Multiplication

Consider the residue class ring of integers with an odd
modulus M. Let X and Y be elements of the ring. Modular
multiplication is defined as finding Z such that 0 < Z < M
and Z = XY (mod M). In ordinary modular multiplication
operation, the digits of the multiplier are scanned from the
most significant position. For each digit that is processed,
the partial product is doubled. If the scanned digit has the
value of one, the multiplicand is then added to the partial
product, otherwise, none is done. The multiplier is then
shifted one position to the left to allow the next digit to be
scanned. The multiplication algorithm is described below.
Note that A is n-digits long and the most significant one is
represented as an—1.

[Algorithm 2]
(Modular Multiplication Algorithm)
Function: Modular Multiplication
Inputs: M : 2" ' < M <2
X, Y. 05 X,Y< M
Qutput: Z = XY mod M
Algorithm:
A=Y, U=0V =X,
fori:=1tondo
U:=2.-Umod M;
g = an-1;
A=A<<1;U:=U+qV)mod M,;
end for
Z:=U,
output Z as the result;

2.2.2 Montgomery’s Modular Multiplication

Montgomery introduced an efficient algorithm for calcu-
lating modular multiplication [4]. Consider the residue class
ring of integers with an odd modulus M. Let X and
Y be elements of the ring. Montgomery’s modular mul-
tiplication algorithm calculates Z(< M) such that Z =
XYW~™! (mod M) where W is an arbitrary constant rel-
atively prime to M. The value of W is usually set to 2"
when the calculations are performed in radix-2 with an n-bit
modulus M.

The radix-2 Montgomery’s multiplication algorithm is de-
scribed below.

[Algorithm 3]
(Montgomery’s Multiplication Algorithm)
Function: Montgomery’s Modular Multiplication
Inputs: M : 2" ' < M < 2"

X, Y: 0 X, Y <M

Output: Z = XY2 " mod M
Algorithm:
A=Y;U:=0,V.:=X;
fori:=1tondo
if Amod2 =0 then ¢:=0;
else ¢ :=1; end if
A= (A-q9)/2;U:=U+qV)/2 mod M;
end for
if U2 M then Z:=U - M,
else Z := U; end if
output Z as the result;

Note that U is always bounded by 2M throughout all it-
erations. Therefore, the last correction step assures that the
output is correctly expressed in modulo M.

3. Basic Modular Operations in RB Sys-
tem

In the hardware algorithm on which we base for construct-
ing the modular multiplier/divider, the inputs operands X
and Y, as well as the output result Z are represented in radix-
2 signed-digit (SD2) integers[5]. X and Y are assumed to be
n-digit. The output result Z is assumed to be (n + 1)-digit
integer. Both the inputs and the output are in the range
[-M + 1, M — 1]. Intermediate results are also represented
in the SD2 representation.

The algorithm requires a doubling procedure for a SD2 in-
teger without overflow. Let A and B be n-digit SD2 integers.
The doubling procedure is performed only when A satisfies
an-1 = 0 or an—z = —an—1. A doubling B := DBL(A),
i.e., the calculation of B such that B = 2 A is performed as
follows. When an—1 = 0, B = [@n—2an-3@n-4- - 8100} and
otherwise (@n—2 = —@n-1), B = [@n—1Gn-3aGn_4 - - - @100).

Procedures for addition, doubling and halving module M
in the SD2 system are also required and are described next.

Let the modulus M (= [lmn_z---m11]) be an n-bit bi-
nary odd integer satisfying 2" "' < M < 2". Let U, V and T
be (n + 1)-digit SD2 integers satisfying —-M < U,V,T < M.
A modular addition T := MADD (U,V, M), i.e., the calcu-
lation of T such that T = U + V (mod M), is performed
through two steps. In the first step, we calculate S :=U+V
in the SD2 system. S is an (n + 2)-digit SD2 number. In
the second step, we add M or 0 or M’ to S, accordingly as
the value of the number formed by the three most significant
digits of S, i.e. the value of [sn+15n5n-1], is negative or zero
or positive. M’ = [10m],_;...m{1] is a (n+1)-digit SD2 num-
ber where m; is 1 or 0 accordingly as m; is 0 or 1, and has
the value —M. This addition is also performed in the SD2
system. Since all the digits of the addend are non-negative
except the most significant one, the addition in this step is
simpler. For the details of the modular addition procedure,
see [6].

Modular doubling T' := MDBL (U, M), i.e., the calcula-
tion of T such that T =2-U (mod M), can be performed
by applying the second step of the modular addition te 2-U,
which is obtained by shifting U by one position to the left.

Modular halving T := MHLV (V, M), i.e., the calculation

of T such that T = V/2 (mod M), is performed through

two steps. In the first step, we add M to V when V is odd,
i.e. when vo + 0. Nothing is performed when V' is even.
In the second step, we shift the result of the first step by
one position to the right throwing away the least significant
digit, which is 0. (Recall that M is odd.)

Procedures MADD, MDBL and MHLV can be per-
formed in a constant time independent of n by means of
combinational circuits.

4. A VLSI Algorithm for Modular Multi-
plication/Division

The hardware algorithm is presented here. It is divided
in 4 steps. Initialization of variables takes place in Step 1.
The core of the algorithm is described in Step 2. A correc-
tion is performed in Step 3, and in Step 4 the output result
is selected. The algorithm has three modes of operation.
In mode=1, the algorithm performs modular division. In
mode=2, it performs Montgomery’s modular multiplication.
Finally, in mode=3, it performs ordinary modular multipli-
cation.

[Algorithm 4]

(A VLSI Algorithm for modular multiplication

and modular division)

Function: Modular Multiplication and

Modular Division
Inputs: M : 2" ' < M < 2"
XY - M<X,Y<M
Output: mode =0: Z = X/Y mod M
mode=1: Z=XY2" " mod M
mode=2: Z=XY mod M
Algorithm:
Step 1:
A=Y;B:=M;P:=1, M :=M;
if mode = 0 then
D=1U:=X;V:=0

else
D=2, U:=0;V:=X,;
goto Step 2-4;

endif

Step 2:

Step 2-0:

if [an-10n-2] = [11] or [11] then
q:=@an-1" bn_1;

A:=A-q-B;
U:= MADD(U,—q-V,M);
endif
Step 2-1:

while p,_1 =0 and
[an-18n-2] ¥ [10] and [an-1a.-2] F [10};
if [an—1Gn-20n-3] = [111] or
[an—18n-2an_3) = [011] then
[an-1an-2an-3) := [101};
elseif [an-1an-2an-3] = [111] or
[an-1an-2as—3]) = [011] then
[an—1an-2an-3) := [101};
else
A:=DBL(A); P:=2.P; D =2 D;
U := MDBL(U, M);
endif
endwhile

__.3.._

Step 2-2:

T' A; A:=B; B:=T,
=U; U=V, V:=T,

Step 2-3:

if Pn-1= 1 then
while do =0 do
D:=D/2;V:=MHLV(V,M);
endwhile
goto Step 3;
endif
Step 2-4:
/ * Main Stage (MUL/DIV) * /
while do = 0 do
if an-1 =0o0r an_2 = —an—1 then
S:=A
else
if mode = 0 then
=ap-1"ba-1;
S:=A-¢q-B;
else
q:= —Gn-1;
S:=A
if mode =1 then s, := 0; endif
endif
U:=MADD(U,—q-V,M),
endif
if (sp-1 =0 or s,_2 = —8p—1) then
A:=DBL(S); D := D/2;
if mode = 2 and do = 0 then
U := MDBL(U, M);
else
V:i=MHLV(V,M);
endif
else
if mode = 2 then s,_, := 0; endif
A:=S5;
endif
endwhile
if mode ¥ 0 then goto Step 4;
/ * Termination Stage (DIV) /
ri= sgn({an-1an-al);
while sgn([an-1@n-2] =7 and
(abs([an—1an-2an-3]) 2 3 or
(bn—S = —bn-1 and
abs([an_lan_gan_g] = 2))

do
g =71 bn_1;
A:=A-¢q-B,
U:= MADD(U,—q -V, M),
endwhile
goto Step 2-1;
Step 3:
if bp_1 =1 then V := —V; endif
Step 4:

if mode = 0 then Z :=V;
else Z := U; endif
output Z as the result;

4.1 Division Mode

In division mode, A and B are represented by two
n-digit RB integers, A(= [an-1an_2---a0])) and B(=
[ba=1bn—2 - - - bo])), and two n-bit binary integers of the form

2‘, P(= [pn_1pn_z .. -po}) and D(= [dndn-ldn_z . -dn]), so
that A = A/(P/D) and B = B/P. A, B, U and V are ini-
tialized to the values of Y, M, X and 0 respectively. At the
beginning of each iteration of Step 2, D = 1 and by-1 ¥ 0.
A=A-2"* B=B.-2"%and P=2""* U =1U and
V =V when B is effectively k-bit long.

At each iteration of Step 2, we first strongly normalize A
which stores the divisor during Step 2-1. A is strongly nor-
malized if a,—1 F 0 and an—2 =0, i.e,, [an_1an-2] = [10] or
[10]. During the normalization, A is doubled several times
by means of DBL shown in Section 3. At the same time
that A is doubled, D and P are also doubled, and U is dou-
bled modulo M by means of M DBL shown in Section 3. In
Step 2-2, A and B, and U and V are swapped respectively.
At this time, A = A-(P/D), B=B-Pand V=V-D
(mod M).

Then, we perform an integer division. We produce Q as a
sequence of ¢’s where ¢ € {~1,1} and @ = }_ ¢ D. Note
that D is updated during the integer division. As the pro-
duction of g, we calculate A—g- B in the SD2 system without
carry propagation (A — g - B corresponds to A — (g D) - B).
Concurrently, we calculate U — ¢ - V modulo M in the SD2
system by means of MADD shown in Section 3. During
the integer division, we double A several times by means of
DBL. When we double A, we halve D, and halve V' modulo
M by means of M HLV shown in Section 3. After the integer
division, D=1, A=A -P,B=B-P (bp_1 $0),U=U’
and V = V.

sgn(fan—1an-2]) is —1 or 0 or 1, accordingly as the
value of [an-1an-2] is negative or zero or positive.
abs([an—1an—2an-3]) means [4an-1 + 2an-2 + @n-3|

Step 2-0 is executed only when the most significant two
bits of A, i.e., the divisor Y, have both the value of 1. Note
that when its most significant two bits have both value of
1, A cannot be strongly normalized. We perform the sub-
traction of A — B in the SD2 system using an ordinary SD2
addition rule, e.g., [6]. Since the most significant two bits of
B, i.e., the modulus M, have also the value of 1 in this case,
the most significant digit of the updated A has as result the
value of 0.

In Step 2-1, we strongly normalize A. At the beginning
of this stage, [an—1an—2] # [11] nor [11], from Step 2-0 and
the SD2 addition rule in the termination stage shown below.
It never become [11] nor [1I] during this stage, because we
rewrite [111] and [011] to [101} and {111] and [011] to [101].
In Step 2-2, we swap A and B and also U and V. In Step 2-
3, when pn_1 becomes 1, i.e., P becomes 2"7!, it means
that |B| has become 1. Then, we divide V by D modulo M
by means of MHLV, because V has been multiplied by D
modulo M. Then we terminate Step 2.

In Step 2-2, we perform an integer division, a Mont-
gomery’s modular multiplication or an ordinary modular
multiplication. During the integer division, we perform the
subtraction of A — ¢+ B in the SD2 system. In this subtrac-
tion, we use the special addition rule shown in Table 1 at the
most significant two positions. Note that when an addition is
performed, [an—1an-2] is not [00]. Furthermore, in the main
stage, when an addition is performed, {an—1an—2] is not [11]

.__.4_

Table 1 A special SD2 addition rule

8n—-18n-2
An—1An-2
cnoa |11 |10 (11,01 (01,11 (10|11
1 |io|o1]| o0 10 |01 |00
0 |oljoo| 01 o1 |o00|o01
1 |00{01]| 10 00 [01]10

nor [01] nor [01] nor [11]. (The rule for these cases in the table
is for the addition in the termination stage.) Note also that
[br—1ba—2] is [10] or [10] and that ¢ = sgn([an—1an—2]) bn_1
(=an —1:bp-1 in the main stage). In the table, c,_3 is the
intermediate carry from the third significant position. We
use an ordinary SD2 addition rule, e.g., that in{6], at the
other positions. Note that [sn—1sn—2] never become [11] nor
[11].

Because of the strongly normalization of A, the computa-
tion in this step is simple. We can show that in the main
stage, no two successive SD2 additions are performed with-
out doubling A (DBL(S)).

In the termination stage, we use a bit complicated con-
dition for termination, in order to avoid the situation that
the final |A| (|.A4']) is very near to |B| (]B|). Note that this
situation makes the convergence of the whole computation
very slow. By the use of the complicated condition, we can
make the final |A| significantly smaller than |B|. Hence, we
can guarantee that when A is not doubled in an execution
of Step 2-1, the updated A must be doubled in the next ex-
ecution of Step 2-1. We can show that no more than three
SD2 additions are performed in the termination stage. Note
that the final [@an—1@n—2] is not [11] nor [11}, from the SD2
addition rule.

In Step 3, when b,—; = I, we negate V in the SD2 system.

In Step 4, we select the output depending on the mode of
operation.

In applications where the output needs to be fed back into
the inputs, the output can be transformed into an n-digit
SD2 number subtracting M to the result when z, has the
value of 1, and adding M when z, has the value of 1.

4.2 Montgomery’s Modular Multiplication Mode

In Montgomery’s modular multiplication mode, A and V'
are initialized to the values of the multiplier Y and the multi-
plicand X respectively. U is used to store the partial product
of the multiplication.

In Section 2.2.2, we described Algorithm 3 which performs
Montgomery’s modular multiplication. It examines the least
significant bit of A to determine whether to add or not V to
U. The result is then divided by 2 using modular arithmetic
and A is shifted one position to the left.

In order to implement Montgomery’s multiplication oper-
ation using the same hardware components required by the
division mode, we introduce SD2 representation in operands,
internal calculation and the output result and we examine
the multiplier from the most significant position first, i.e.
an—1. For a nonzero value of the digit, we add or subtract
the multiplicand X stored in V to U depending on the sign
of it. If it is positive, we add. Otherwise we subtract. Then,

instead of dividing the partial product U by 2 modulo M,
we divide the multiplicand V by 2 modulo M. For this op-
eration we use M HLV(V, M) described in Section 3. If the
value of the digit an—, is 0, we perform a DBL(A) to shift
to the left the multiplier and MHLV(V, M) to divide the
multiplicand by 2 modulo M. The same operations are per-
formed for the cases that [an—1an—2] = 11 or 11 since they
represent a 0 at the most significant digit of A. The ‘for’ loop
is implemented using variable D which is initialized with 2"
and 1t is shifted to the right at each iteration step until it is
equal to 1. Montomery’s constant results in this case equal
to the value of 2771,

4.3 Ordinary Modular Multiplication Mode

We also implement the ordinary modular multiplication
described in Section 2.2.1. We also perform the operations in
SD2 representation. Since variable U, which stores the par-
tial product, is initialized with 0, instead of doubling U and
then adding the multiplicand, we proceed in the reverse or-
der. For the case that an—1 =0 or [an—1an—2] = 11 or 11, we
just double A by means of DBL(A) and U by MDBL(U, M).
For the cases that [@,-1an—2] = 11 or 10 or 11 or 10, in order
to share hardware components without increasing the calcu-
lation delay, we split the calculation of MDBL(U, M) and
MADD(U, —q - V, M) into two different iteration steps. We
first perform U := MADD(U, —q - V, M) depending on the
value of an-1 and we leave the most significant position of
A in 0. By doing so, A is shifted to the left by DBL(A)
and U is doubled modulo M by MDBL(U, M) in the next
iteration. Since we reverse the order of doubling the partial
product and adding the multiplicand, M DBL(U, M) is not
performed in the last iteration.

5. A Multiplier/Divider for
Arithmetic

Modular

An n-bit modular multiplier/divider based on Algorithm 4
consists of seven registers for storing A, B, P, D, U, V and
M, and a combinational circuit part.

We assume that we perform each of Step 2-0, or one itera-
tion of Step 2-1, or one iteration of Step 2-2, or one iteration
of Step 2-3, or one iteration of main or termination stage of
Step 2-4, or Step 3 in one clock cycle. Then, in one clock
cycle, the modular divider mainly performs a SD2 addition
of A— B and MADD(U, -V, M) in Step 2-0, or DBL(A),
one-bit-shifts of P and D and MDBL(U, M), or swaps of A
and B, and U and V, in Step 2-2, or a one-bit-shift of D and
MHLV(V, M) in Step 2-3, or a DBL(A) and MDBL(U, M)
or MHLV(V, M) and a one-bit-shift of D or a SD2 addition
of A—q- B or areset of the most significant digit of A and
MADD(U,~q - V, M), and a possible DBL(S), a one-bit-
shift of D and MHLV(V, M), in Step 2-4, or a negation of
V in the SD2 system, in Step 3.

The combinational circuit part of the divider (for Steps 2
and 3) mainly consists of an SD2 adder (with an operand
negator), a modular adder (with an operand negator), a mod-
ular doubling, a modular halving circuit, an SD2 negator and
selectors. The modular adder consists of two SD2 adders one
of which is simpler. The modular doubling and the modular
halving circuit consist of simpler SD2 adders. These circuits

__5_

Table 2 The number of cells, area, and delay of a multi-
plier/divider, a divider, a Montgomery’s multiplier and
an ordinary multiplier

n circuit #cells | delay[ns] | arealmm?]
MON/MUL/DIV | 17462 | 6.69 | 2.753220
128 DIV 17748 6.69 2.740202
MON 9515 6.67 1.484740
MUL 7892 6.69 1.242536
MON/MUL/DIV | 34130 6.69 5.598141
256 DIV 33816 6.69 5.539039
MON 19573 6.69 3.093940
MUL 15717 6.67 2.552651
MON/MUL/DIV | 69117 | 6.69 | 11.140568
512 DIV 70966 6.69 11.353540
MON 42263 6.69 6.801672
MUL 33485 6.69 5.485547

have bit-slice structure.

The depth of the combinational circuit part is a constant
independent of n, and therefore, the length of the clock cycle
is constant independent of n.

The modular divider has a bit-slice structure and is suit-
able for VLSI implementation. The amount of hardware of
the modular multiplier/divider is proportional to n.

In division mode, from the discussion in the previous sec-
tion, we can show that in Step 2-4, no two successive clock
cycles are executed without doubling A (DBL(S)) in the
main stage, and no more than three cycles are executed in
the termination stage. We can also show that if DBL(A)
is not performed in an execution of Step 2-1 (normalization
of A), DBL(A) must be performed in the next execution of
Step 2-1. Hence, we can show that the number of clock cy-
cles executed in Step 2 is at least 2n and at most about 3n.
It varies with the operands.

Montgomery'’s multiplication is performed in Step 2-4 in
exactly n clock cycles. Ordinary modular multiplication is
performed in at least n and at most 2n clock cycles. It varies
with the multiplier.

6. Experimental Results

We have designed a modular multiplier/divider, as well as
a modular divider based on the algorithm proposed in [3],
an ordinary modular multiplier, a Montgomery’s modular
multiplier separately. We used Verilog HDL and synthesized
them by Synopsys Design Compiler using 0.354m CMOS 3-
metal technology provided by VLSI Design and Education
Center(VDEC), the University of Tokyo, with the collabo-
ration by Rohm Corporation. Table 2 shows the number of
cells, area, and delay of the described circuits for n = 128,
256 and 512. As show on the table, area of the multi-
plier/divider is similar to the area of the modular divider
based on [3] and it is much less than the sum of areas of the
ordinary modular multiplier, Montgomery’s modular mul-
tiplier and the modular divider with the delays remaining
practically to the same value.

7. Conclusion

We have proposed a modulo M multiplier/divider that has
large part of the circuit components shared by the three op-

erations. The circuit has a linear array structure with a bit-
slice feature, and is suitable for VLSI implementation. The
amount of hardware of an n-bit modular multiplier/divider
is proportional to n. It performs an n-bit modular mul-
tiplication/division in O(n) clock cycles, where the length
of clock cycle is constant independent of n. The area of
the modular multiplier/divider resulted much smaller then
the sum of areas of the ordinary modular multiplier, Mont-
gomery’s modular multiplier and the modular divider imple-
mented separately. Delays remained practically to the same
value.
References

{1] R. L. Rivest, A. Shamir, and L. Adleman, ‘A method for
obtaining digital signatures and public-key cryptosystems,’
Commun. ACM, vol. 21, no. 2, pp. 120-126, Feb. 1978.

2] T. ElGamal, ‘A public key cryptosystem and a signature
scheme based on discrete logarithms,” IEEE Trans. Infor-
mation Theory, vol. IT-31, no. 4, pp. 469-472, July 1985.
Nov. 1976.

[3] N. Takagi, ‘A hardware algorithm for modular division
based on the extended Euclidean algorithm,” IEICE Trans.
Information and Systems, vol. E79-D, no. 11, pp. 1518~
1522, Nov. 1996.

[4] P. L. Montgomery, ‘Modular Multiplication without Trial
Division’ Mathematics of Computation, vol. 44, no. 170,
pp. 519-521, Apr. 1985.

[5] N. Takagi, H. Yasuura and S. Yajima, ‘High-speed VLSI
multiplication algorithm with a redundant binary addition
tree,’ IEEE Trans. Computers, vol. C-34, no. 9, pp. 789-
796, Sep. 1985.

[6] N. Takagi and S. Yajima, ‘Modular multiplication hardware
algorithms with a redundant representation and their ap-
plication to RSA cryptosystem,” IEEE Trans. Computers,
vol. 41, no. 7, pp. 887-891, July 1992.

__6_

