2004 —SLDM—117 (39)
2004°12/°2

#HEEA FRLEZS HERE
IPSJ SIG Technical Reports

RSFQ B EIFE O EIEERIC L 2 iwEiks
70 S LA < I AL :- I -
T RRERRZEMKERERT FRE EHER
T 630-0192 AE7TH i (LIET 8916-5
11 REBRERFER HREFER
T 606-8501 AR R X & HAHET
E-mail: {ger@is.naist.jp, {1{ktanaka,htakada}@db.soc.i.kyoto-u.ac.jp

HoEL LTI, rapid single lux quantum (RSFQ) REEIMMITOF LW RERHFIEL BT S. TS
FikiL, 12x2-Join] EFETN D EADS [2x2-AND/XOR) L4&fHF72 2 AA 2 HADRBENEERTDH LR E
AL LTW5., BEMIZIE, 2x2-AND/XOR » b2 2 IHEIREER L, ThE M TV AF T v a ARICES EE
BRI LV BEBILEITR Y. BRFETE, FVPFAD I RF Y ¥ a vik% 2x2-AND/XOR =LV OHE %%
REFATERIIIBELTHEALTWS. SISIKEVER LPHERICERRBFEORBECEHERALLL IS,
EIREFEE 32.0%HBT D A TE .

F*—7J—FK RSFQ, "7 vRFI7vavik REHRE

Transformation-Based Logic Design for RSFQ Logic Circuits

Shigeru YAMASHITA', Katsunori TANAKA'! and Hideyuki TAKADA'

t Graduate School of Information Science, Nara Institute of Science and Technology
8916-5 Takayama, Ikoma, Nara 630-0192, JAPAN
11 Graduate School of Informatics, Kyoto University
Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, JAPAN
E-mail: fger@is.naist.jp, tf{ktanaka,htakada}@db.soc.i.kyoto-u.ac.jp

Abstract In this paper, we propose a new method to synthesize rapid single flux quantum (RSFQ) logic circuits.
We propose to use a primitive logic cell called “2x2-Join” to make a two-input and two-output logic cell, which
we call “2x2-AND/XOR.” Our method starts with the initial circuits consisting of 2x2-AND/XORs, and optimizes
them by using a transformation based heuristic method based on the Transduction Method. In our transformation
method, we modify the original Transduction Method so that we can fully utilize the property of 2x2-AND/XORs.
Our experimental results show that we can achieve 32.0% reduction on average from the initial circuits generated
by SIS.

Key words RSFQ, Transduction Method, Logic Design

. e Intrinsic switching time of the Josephson junction is
1. Introduction . & . P !
also very short, typically a few picoseconds.

Rapid single flux quantum (RSFQ) integrated circuits .

composed of Josephson-junction devices have been inten-
sively studied because of their potentially high performance
with high clock frequency and extremely low power consump-
tion [1]. RSFQ technology has the following features [1].

e Ultrafast digital signals can be passed along the chips
ballistically with a propagation speed approaching that of
light.

The power dissipated by a Josephson junction is typ-
ically below one microwatt. Hence, the problem of removal
of heat is quite solvable. (Currently this is not essentially
true since we need some cooling system for the whole RSFQ
circuits themselves. However, there is a possibility that we
can construct ultra low power systems by RSFQ technology
in the future.)

® The Josephson junction fabrication technologies are

—227—

研究会temp
テキストボックス

considerably simpler than those of the conventional semi-
conductor (both Si and GaAs) transistors with similar design
rules.

Although it currently requires a refrigeration technique, such
as liquid-helium cooling, the benefits of RSFQ technology
would become huge in the near future.

As the current CMOS technology is approaching “Red
Brick Wall” [2], the RSFQ technology is considered as one of
the promising next generation technologies. Actually RSFQ
digital circuits containing several thousands of Josebhson
junctions have been successfully implemented and their high
performance has been confirmed [3].

Up to the present, for RSFQ circuits, there have been many
researches for devices and design methods of some primitive
logics cells, but few researches for logic design methods of
large circuits. Among the researches for logic design meth-
ods for RSFQ circuits, the cell based methods [4]~[6] have
been studied like conventional CMOS technology. In their
methods, a logic primitive called “RSFQ D, flip-flop” is used
to replace a node of Binary Decision Diagram [7]. In this pa-
per, we use another primitive called “2x2-Join” [8] and pro-
pose a new method to synthesize RSFQ logic circuits from
2x2-Joins. It would be possible to construct an efficient logic
design system from the combination of our method and the
above-mentioned cell based methods [4]~[6].

To make an efficient logic design methods for larger cir-
cuits, it is very common to adopt transformation based
heuristic methods like the Transduction Method [9] for con-
ventional circuit design. One of the reasons is that the exact
optimization of a large circuit is impossible, and therefore,
we reduce the circuit size by transforming the initial circuits
in a heuristic manner. The Transduction Method [9] sim-
plifies a logic circuit based on the concept of permissible
functions (PFs). A permissible function expresses the con-
dition that should be satisfied by the logic function to keep
the output functions of the whole circuit. By using permis-
sible functions, we can transform circuits consisting of the
conventional AND/OR/NOT gates. The concept of PFs is
applicable not only to the conventional logic gates but also
to the other types of gates that are used in our method.

In this paper, we propose a transformation-based heuristic
optimization method for RSFQ circuits like the conventional
logic circuit design methods mentioned above. To do so, we
carefully exploit the property of 2x2-Joins, and contrive how
to construct logic circuits from them and how to apply a
It should be noted that
the situation is a little bit different from that of the conven-
tional AND/OR/NOT gates, and thus we need to modify

some parts in a conventional transformation method, as we

transformation method to them.

will mention in the rest of this paper.

This paper is organized as follows. In Section 2, we sum-
marize the concept of CSPFs since it is useful to understand
our method. In Section 3, we describe how logic primitives of
RSFQ circuit work, and how to construct logic circuits from
them. Then, Section 4 is devoted to explain our proposed
logic design methods. We show some experimental results
to demonstrate the effectiveness of our method in Section 5.

Finally, we conclude the paper in Section 6.

2. Compatible Sets of Permissible Func-
tions (CSPFs) and Their Utilization
for Logic Optimization

The Transduction Method [9] simplifies a logic circuit
based on the concept of permissible functions (PFs). In-
tuitively, a completely specified function g is said to be a PF
at a point (connection or gate’s output), if no primary out-
put function is undesirably changed even when the function
realized at the point is changed to g. At each connection or
gate, generally there exist two or more PFs, and so we can
consider a set of PFs. There have been proposed two types
of such sets, the maximum set of PFs (MSPF) and a
compatible set of PFs (CSPF). CSPFs can be used to
transform a circuit at multiple points simultaneously unlike
MSPFs, and therefore, we usually use CSPFs preferably to
MSPFs in logic optimization.

CSPF can be expressed by an incompletely specified func-
tion whose values are 0, 1, or * (don’t-care). Let the number
of primary inputs of a circuit be n. Then, the logic function
realized at each point in the circuit can be specified by a truth
table consisting of 2" elements (0 or 1). Below, for simplicity,
we consider 4 elements of them, and express a logic function
and CSPF by using vectors, like (0110) and (011x), respec-
tively. If one element of the CSPF at a point in a circuit is *,
then the corresponding element of the function at the point
can become either 0 or 1 without any undesirable change of
the primary output functions. For example, if the CSPF at
some point is (011%), both (0110) and (0111) are PF's for the
point, i.e., both functions can be allowed to replace the func-
tion at the point. In other words, at each point, the CSPF
expresses the condition for circuit transformation without
any undesirable change of the primary output functions.

CSPF at each input connection ofa gate is calculated from
CSPF at its output and the functions at its input connec-
tions. Let us explain how CSPFs are calculated by using an
example where an AND gate has two input connections. Let
the CSPF at the output of the gate be (10*0), and let the
input functions be (1100) and (1010). Let us see the first
elements of the expressions. The CSPF at the output is 1.
This means that both input function values must be 1 since
the gate is AND. Namely, both of the input CSPF values

—228—

B A — —

. / \O c| |Ha BE
—.\ — — 10[—
c B/ —] Bf 11—

Fig. 1 SPL Fig. 2 CB

Fig. 3 2x2-Join

are calculated as 1. With respect to the second values, since
the output CSPF value is 0, at least one of the input CSPF
values must be 0 and all the other values can be *. Since the
element of the second function is 0, the element of the CSPF
for the first input is calculated as *. With respect to the
third elements, since the output CSPF value is *, both input
CSPF elements are calculated as *. Finally, with respect to
the fourth elements, the output CSPF and both input func-
tion values are 0. In this case, as mentioned above, at least
one of the input CSPF values must be 0 and all the other
values can be *. Now the both function values are 0, and
hence, we assign priorities to input connections beforehand
so that we can determine the element of which input connec-
tion should be 0 (and the other elements can be *). See[9]
for more detail.

This calculation method can be easily generalized to any
gate types, and therefore we can calculate CSPFs in a circuit
consisting of AND, XOR and NOT, which will be used in our
method.

By using CSPFs, we can determine whether a connection
can be removed or replaced with another one in the following
manner.

Removal When a gate is an OR, NOR or XOR gate, we
can remove a input connection of the gate if the CSPF at
the connection contains the constant-0 PF (all the elements
of the expression are 0 or x). When a gate is an AND or
NAND gate, we can remove a input connection of the gate
if the CSPF at the connection contains the constant-1 PF.
Replacement If the function at a gate is included in the
CSPF at a connection, then the connection can be replaced
with a new connection from the gate.

We can optimize circuits by applying repeatedly the re-

moval and replacement in a heuristic manner.

3. Our Circuit Model: RSFQ Logic Cir-
cuit

3.1 RSFQ Logic Primitives

We can generate and propagate single flux quantum (SFQ)
pulses, as desired, by the combination of superconducting
rings with Josephson junctions in RSFQ circuits. There has
been proposed many logic primitives to manipulate pulses in
RSFQ circuit in logic level. Among them, in this paper, we

use the following three logic primitives [1], [8].

Tab. 1 2x2-Join Pulse Operation
Inputs Outputs
At Af B By 00 01 10 11
Pulse | No |Pulse| No No No No | Pulse
Pulse | No No | Pulse| No No |Pulse| No
No | Pulse | Pulse | No No |Pulse| No No
No |[Pulse| No |Pulse|Pulse| No No No

SPL (Splitter) This logic primitive generate two pulses
from a single pulse. We express this primitive as a black
circle as shown in Figure 1.
CB (Confluence Buffer) This logic primitive merges two
pulses into a single pulse. We express this primitive as a
white circle as shown in Figure 2. The two input pulses are
not allowed to arrive at the same time.
2x2-Join 2x2-Join has four inputs and four outputs as
shown in Figure 3, and it generates one pulse at one of the
four outputs depending on the combination of input pulses.
The relationship between inputs and outputs are described
in Table 1. For example, if it receives two pulses at A; and
B:, then it generates a pulse at the output 11.

3.2 Dual-Rail Logic Design

At the early times when researches for RSFQ circuit
started, a clock signal was used to translate a pulse on a data
line in a “clock window” as logic “1” and no pulse as logic “0”
like conventional synchronous circuit design. The reason is
that we need to specify the exact time when a pulse comes,
or otherwise we cannot distinguish between logic “0” and
logic “1” while pulse has not arrived yet. Therefore, unlike
the conventional technologies, for RSFQ circuit logic design,
careful delay estimation and clock design are required [10]
since an improper arrival order of data and clock pulses leads
to erroneous data transfer. Facing the above-mentioned tim-
ing problems, the RSFQ technology has been paying an at-
tention to an asynchronous approach. More precisely, dual-
rail data encoding is used to enables clock free data trans-
fer [11]. In the dual-rail scheme, a pair of (true- and false-)
data lines carries 1-bit binary information. The propagation
of a pulse on the true-line or the false-line represents logic
“1” and “0,” respectively. No race occurs because only one
pulse propagates either true- or false-line during 1-bit data
transfer. In this paper, we also take dual-logic scheme, and
therefore, we use two lines (true- line and false- line) to prop-
agate 1-bit information of an intermediate logic function. We
will mention our circuit model more precisely and formally
in the next section.

3.3 Our Circuit Model and Problem Formulation

As mentioned in the previous section, we take dual-rail
logic scheme, and therefore, our circuit model is specified as
follows:

Dual-Rail RSFQ Logic Circuit

—229—

研究会temp
テキストボックス

The inputs of RSFQ logic circuits are dual-rail, therefore,
there are two lines (true- and false-) for each logical input.
We denote the two lines as z; and x5 for input x. The out-
puts of circuits are also dual-rail. Therefore, we have two
outputs for each logical output. The outputs are also de-
noted as y; and yy for the logical output y. For the simplicity,
we also restrict ourselves to construct a whole circuit from
sub-circuits whose inputs and outputs are also dual-rail logic
inputs. Then, our problem is described formally as follows:
 fm.

Output A dual-rail logic circuit that realizes fi, f2, -, fm

Input m specified logic function f1, f2,- -

and the negation of them. Our objective is to construct the
desired circuit with as few logic primitives as possible. In
particular, in this paper, we focus on the number of 2x2-

Joins.

4. Transformation-Based Logic Design of
RSFQ Circuits

In this section, we describe our logic design method of
RSFQ circuits.

4.1 2-Input Dual-Rail Logic Sub-Circuits

In our method to synthesize RSFQ logic circuits, we syn-
thesize all sub-circuits as dual-rail logic circuits, as men-
tioned in Section 3.3. More concretely, we generate 2-input
dual-rail logic sub-circuits by our logic primitives, and then
construct the entire circuit from the 2-input sub-circuits.

Our construction of 2-input sub-circuits is as follows. Sup-
pose we want to construct f with respect to two intermediate
inputs h1 and hz. In our construction, we always make any
intermediate functions as dual-rail logic, and therefore, we
also have h} and h%. We connect h1, by, h2 and hj to Ay, Ay,
B; and By, respectively, of a 2x2-Join as shown in Figure 4.
Then the outputs of the 2x2-Join, 00, 01, 10 and 11 gener-
ate pulses corresponding to the logic functions of (hj - h3),
(h} -h2), (h1-h3) and (hi-h2), respectively. They are the four
minterms of h; and hg, and thus, any function with respect
to h; and hy can be constructed by merging some of four
outputs, 00, 01, 10 and 11, by using CBs. We can construct
f' by merging the outputs of the 2x2-Join that are not used
for f. An example where f = h; - ha is shown in Figure 4. To
sum up, by using a 2x2-Join with two CBs, we can construct
any dual-rail logic function f of two intermediate functions.
That is, we can consider this 2-input sub-circuit as a 2-input
LUT (look-up table).

In this paper, we consider another utilization of 2x2-Join,
that is, we consider making multiple functions from a single
2x2-Join. For example, we can make AND and XOR func-
tions of two inputs by using a single 2x2-Join, three CBs and
three SPLs as shown in Figure 5. Indeed, we can make all the

possible sixteen 2-input functions at the same time by a sin-

hy, ——s At 00 "~ cs
h’, 1 At 01 —:/_'o__,f-
hy, 42— Bt 10
B,y 1 f=hh,
2x2-Join
Fig. 4 2x2-Join Usage (1)
SPL &’
hy 4~ At 00
, Vid
o o1 :g=hh’+h b’
hz .- Bt 10 }— B 1% 2 1% 2
B’ 4— Bt " S=hyh,
2x2-Join

Fig. 5 2x2-Join Usage (2): 2x2-AND/XOR Cell

gle 2x2-Joins with many CBs and SPLs. However, since we
use dual-rail logic, we do not need to consider the polarity of
the inputs and the output of the functions, and therefore, it
is enough to implement AND and XOR for 2-input functions.

Considering the above discussions, our logic design method
constructs a circuit by using the logic primitives that have
two outputs of AND and XOR of its two inputs. We call
this logic primitive “2x2-AND/XOR,,” and how to construct
a circuit from 2x2-AND/XORs will be given in the following
sections. Note that 2x2-AND/XOR cell is exactly the same
as the cell shown in Figure 5.

4.2 Initial Circuits Synthesis

As mentioned in the previous section, we can construct a
sub-circuit that realizes any 2-input logic function. There-
fore, any logic circuit consisting of only 2-input nodes can
be naturally mapped to our RSFQ logic circuit. Thus, our
logic synthesis starts with a circuit consisting of only 2-input
nodes. This initial circuit can be generated by conventional
logic design tools, such as SIS (A System for Sequential Cir-
cuit Synthesis) [12]. For example, by using a standard script
of SIS, we can obtain a circuit consisting of 2-input ANDs,
2-input XORs, and NOTs. Then, we can map this circuit
naturally into one consisting of 2x2-AND/XORs. Note that
one of two outputs of each 2x2-AND/XOR is not used (i.e.,
redundant) at this moment, however, the redundant outputs
are very useful in our optimization procedure mentioned in
the next section.

4.3 Transduction Method for 2x2-AND/XOR

Circuits

After obtained the

AND/XOR circuits, we apply the following procedure where

initial circuit consisting 2x2-
we consider the whole circuit as a conventional circuit con-
sisting of just 2-input XORs, 2-input ANDs and NOT's. How-

ever, while each AND or XOR gate is considered as a sin-

—230—

gle gate in the conventional Transduction Method, the AND
gate and XOR gate in a 2x2-AND/XOR cell should be han-
dled as a pair, as we will mention.

Step 1 Calculate CSPFs of all connections and gates in the
circuit.

Step 2 Remove redundant connections and gates by using
CSPFs.

Step 3 Replace a connection with another connection by
using CSPFs.

We repeat the procedure until there is no change.

This scheme is almost the same as that of the conventional
Transduction Method. However, note that we can remove
a 2x2-AND/XOR cell only when the both AND and XOR
outputs are removed. Therefore, unlike the case of the con-
ventional circuit optimization, it is not important to remove
only one of XOR or AND of a 2x2-AND/XOR cell. There-
fore, the unique features of our strategy compared with the
conventional Transduction Method are the followings:

e If there are multiple candidates for the alternative con-
nection at Step 3, we choose the output of 2x2-AND/XOR
such that whose total number of fanouts (i.e., the number of
fanouts of the both AND and XOR outputs) are relatively
large. In contrast, in the conventional Transduction Method,
we consider only the number of fanouts of the gate that is
chosen as a replacement. This means that if we take the
conventional strategy, we always consider only one of AND
and XOR outputs of 2x2-AND/XOR cells, and therefore, we
may miss a chance to remove a whole 2x2-AND/XOR cell
even though we can remove one of its output gate.

® At Step 3, to select a candidate function, if there is a
gate whose output function is f, we can also use f’ since we
use dual-rail logic.

e At Step 2, we remove an AND (or XOR) gate only
when the corresponding XOR (or AND) gate of the same
2x2-AND/XOR cell is also redundant. By this modification,
we can continue to have a possibility to use AND (or XOR)
function to replace another connection even though it is cur-
rently not used. If the both gates becomes redundant, we
remove the 2x2-AND/XOR cell.

As we mentioned in Section 4.1, we can consider the logic
primitives as 2-input LUTs that can be constructed as shown
in Figure 4. For a logic circuit consisting of LUTSs, there
is an efficient optimization method that utilizes SPFD [13].
(SPFD is a generalization of CSPF to the case of LUTs where
we can utilize the flexibility of LUTs, i.e., we can change the
internal functions of LUTs.) Therefore, one might wonder if
the following strategy is more natural and better than our
strategy.

e Consider the logic primitive as 2-input LUTs which

can be constructed as shown in Figure 4.

Tab. 2 Experimental Results

Initial Circuits Trans.

Circuits | PI| PO | Join | Conn. | Lev. | Join | Conn. | Lev. | Time (s) | Shared | (%)

C1355 41| 32| 234 468 17 174 348 14 117 6| 34
C7552 |207|108 (1504 3059 | 32| 994 | 2049 | 32 122.14 136 | 13.7

alu2 10 6| 386 773 | 42| 236 473 28 3.35 411173
alud 14 8| 667 | 1334| 43| 479 958 | 36 11.26 84175
cmb 16 4 44 88 6 25 51 5 0.01 4(16.0
dalu 75| 16 |1172| 2344| 36| 809 1618 18 36.59 84104
f51m 8 8 113 227 10 64 129 9 0.11 10| 15.6
i8 133 | 811260 | 2520 19 971 | 1942 15 155.37 127|131
lal 26| 19 88 177 8 61 123 8 0.06 7|115
my.adder [33| 17 96 192 48 64 128 | 48 0.08 16 | 25.0
t481 16 1(1690 3380 20| 1073 2146 19 110.66 57| 5.3
terml 34| 10| 259 519 16| 116 234 1 0.68 15129
ttt2 24| 21| 182 364 10| 127 254 10 0.41 19| 15.0
x3 135| 99| 724 | 1448 14| 548 | 1096 12 14.19 41| 75
z4ml 7 4 44 88 9 12 25 8 0.01 6] 50.0
Average 100 100 | 100)| 68.0 | 68.2 | 82.7 6.08 114

e Apply SPFD-based optimization method [13].

We would like to note that the above strategy is essentially
the same as the ours since it is sufficient to consider AND
and XOR for 2-input functions when we use dual-rail logic.
In other words, our strategy to use 2x2-AND/XOR cell es-
sentially has the same power as the one that uses SPFDs.
Therefore, for our problem, we do not need to calculate and
manipulate SPFDs that are more complicated than CSPFs.
Moreover, to treat the possibility of having multiple outputs
from single 2x2-Join cell as shown in Figure 5, we need to
modify the original SPFD calculation. In contrast, we do not
need to modify the way of calculation of CSPFs although we
need to take a little different strategy to replace connections
as mentioned above (however, apparently it is not difficult
to implement our strategy compared with the original strat-

egy).
5. Experimental Results

We have implemented the methods presented in the pre-
vious sections and performed preliminary experiments on
MCNC [14] benchmark circuits.
cuits we used the following recommended script of SIS [12].
(2) gkx -ac, (3) simplify -d,
(4) xl_part_coll -m -g 2 (5) xl_coll_ck,

(6) xl_partition -m,

To synthesize initial cir-

(1) eliminate 2,

(7) simplify.

Table 2 shows the results of our optimization procedure
described in Section 4.3. In Table 2, “Join,” “Conn.” and
“Lev.” show the number of 2x2-Joins, the number of connec-
tions between them and the level (depth) of the circuits, re-
spectively, and “Time” shows optimization time our method
took in these experiments. In our method, several 2x2-Joins
are shared to realize multiple functions. In Table 2, “Share”
shows the number of shared 2x2Joins, and the percentage is
the ratio to the number of the total 2x2-Joins. In the lowest

row, with respect to the number of 2x2-Joins, the number of

—231—

研究会temp
テキストボックス

connections and the circuit level, we show the ratio to the
initial circuits, and with respect to the optimization time,
we show the average of those for the benchmark circuits. In
Table 2, we can observe that our method reduced the num-
ber of 2x2-Joins, the number of connections and the circuit
level by 32.0%, 31.8% and 17.3%, respectively, while our op-
timization procedure took 6.08 seconds on average. This high
performance is realized by an important our method’s fea-
ture that 11.4% of 2x2-Joins can be used to realize multiple
functions on average.

We consider that this large reduction is due to the
change from the single-output LUT to the multi-output 2x2-
AND/XOR composed of a 2x2-Join, SPLs and CBs. It is
apparent that two 2x2-AND/XORs can be merged into one
if their inputs are from the same 2x2-AND/XORs. Other-
wise, we cannot determine only from the circuit configura-
tion whether they can be merged or not. However, from the
CSPFs and the functions at the two 2x2-AND/XORs, we
can determine if they can be merged. Our method realizes
this determination based on the CSPFs. This feature makes
our method more powerful.

As the case of conventional logic synthesis, the logic opti-
mization should be also very important for the RSFQ logic
circuit design since it is difficult to design optimum RSFQ
circuits directly from the specifications. From this view-
point, our optimization method might be useful in the second
step of any circuit synthesis for RSFQ logic circuits. More-
over, although the conventional mapping tools mainly pro-
duce single-output LUT circuits, our method can transform
them into multi-output 2x2-AND/XOR circuits. Therefore,
by taking the advantage of the multi-output feature, our
method can optimize the 2-input circuit mapped by SIS as

the experimental results show.
6. Conclusions and Future Work

In this paper, we have presented a new method to syn-
Our method
adopts a transformation based heuristic method based on
the Transduction Method [9].
the followings:

e We propose to use a 2x2-Join as a 2x2-AND/XOR cell
for RSFQ logic circuit synthesis.

thesize RSFQ logic circuits from 2x2-Joins.

Our contributions would be

e We propose an optimization method by modifying the
original Transduction Method so that it can utilize the prop-
erty of 2x2-AND/XOR cells.

The experimental results show that our method reduces the
initial circuit size by 32.0% on average. In this paper we only
consider the number of 2x2-Joins, but it is almost obvious
that the number of CBs and SPLs are also decreased if we

can decrease the number of 2x2-Joins.

There are other logic primitives for RSFQ circuits, such as
RSFQ D flip-flop. Our future work is to treat other logic
primitives in our method. Then, we would also like to com-
bine our method with the existing methods [4]~[6] that use
RSFQ D3 flip-flops for their primitives.

Acknowledgement We would like to express our grat-
itude to Emeritus Prof. Saburo Muroga and the late Prof.
Yahiko Kambayashi for gracious supervision and guidance.

References

[1] K. K. Likharev and V. K. Semenov: “RSFQ logic/memory
family: A new Josephson-junction technology for sub-
terahertz-clock frequency digital systems”, IEEE Trans.
Appl. Superconductivity, 1, 1, pp. 3-28 (1991).

[2] “International Technology Roadmap for Semiconductors”,
Technical Report http://public.itrs.net/ (2003).

[3] V. K. Semenov, Y. A. Polyakov and D. Schneider: “Im-
plementation of Oversampling Analog-to-Digital Converter
Based on RSFQ Logic”, Extended Abstracts of ISEC’97,
Vol. 1, pp. 41-48 (1997).

[4] J. Koshiyama and N. Yoshikawa: “A Cell-Based Design
Approach for RSFQ Circuits Based on Binary Decision Di-
agram”, IEEE Trans. Appl. Superconductivity, 11, 1. pp.
263-266 (2001).

[5] N. Yoshik and J. Koshiy : “Top-Down RSFQ Logic
Design Based on a Binary Decision Diagram”, IEEE
Trans. Appl. Superconductivity, 11, 1, pp. 1098-1101
(2001).

[6] N. Yoshikawa, H. Tago and K. Yoneyama: “A New Design
Approach for RSFQ Logic Circuits Based on the Binary De-
cision Diagram”, IEEE Trans. Appl. Superconductivity, 9,
2, pp. 8161-8164 (1999).

[7] R. E. Bryant: “Graph-based algorithm for Boolean func-
tion manipulation”, IEEE Trans. Comput., C-35, 8, pp.
667-691 (1986).

[8] Y. Kameda, S. Polonsky, M. Maezawa and T. Nanya:
“Self-timed Parallel Adders based on DI RSFQ Primitives”,
IEEE Trans. Appl. Superconductivity, 9, 2, pp. 40404045
(1999).

[9] S. Muroga, Y. Kambayashi, H. C. Lai and J. N. Culliney:
“The Transduction Method - Design of Logic Networks
Based on Permissible Functions”, IEEE Trans. Comput.,
38, 10, pp. 1404-1424 (1989).

[10] K. Gaj, E. G. Friedman and M. J. Feldman: “Timing of
multi-gigahertz rapid single flur quantum digital circuits”,
IEEE Journal of VLSI Signal Processing, 16, 2-8, pp. 247~
276 (1997).

[11] J. Deng, S. Whiteley and T. V. Duzer: “Data-Driven Self-
Timing of RSFQ Digital Integrated Circuits”, Extended Ab-
stracts of ISEC’95, pp. 189-191 (1995).

[12] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon,
R. Murgai, A. Saldanha, H. Savoj, P. R. Stephan, R. K.
Brayton and A. Sangiovanni-Vincentelli: “SIS: A Sys-
tem for Sequential Circuit Synthesis”, Technical Report
UCB/ERL M92/41, Univ. of California, Berkeley (1992).

[18] S. Yamashita, H. Sawada and A. Nagoya: “SPFD: A
New Method to Express Functional Permissibilities”, IEEE
Trans. Comput.-Aided Design Integrated Circuits, 19, 8,
pp. 840-849 (2000).

[14] S. Yang: “Logic synthesis and optimization benchmarks
user guide version 8.0”, MCNC (1991).

—232—

