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Abstract Convolutional compactors offer a promising technique of compacting test responses that include unknown values. One
drawback of this compaction technique is error masking, i.e., some errors appearing in the test responses cannot be detected due to
mutual cancellation. In this work, we theoretically analyze error-masking probability. First, we apply weight distributions of
binary linear error-correcting codes to derive the error-masking probability. We then present a fast calculation scheme for 4- and
6-error-masking probabilities. Numerical examples reveal that they are about the same as those obtained by Monte-Carlo
simulations. We also found that the masking probability as a function of test length has a peak value for constant error
probabilities, such as 0.01, and 0.001.
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1. Introduction
With the advance in semiconductor technology. the cost of testing

Testing methods that combine scan chains and BIST have also been
proposed [7]. However. it is still difficult to attain 100% fault

VLSI chips has been increasing [1]. Testing them is requiring
exponential amounts of test data and longer testing times due to their
faster clock frequency and increasing scale, resulting in higher costs.
Therefore. it is important not only to reduce test stimuli but also to
reduce the number of test responses that needed to be compared. To
overcome these difficulties, many testing techniques have been
proposed [2-5].

One promising testing technique is the built-in self-test (BIST),
where a linear feedback shifi-register (LFSR) is used as a
pseudo-random test generator and a multiple-input signature register
(MISR) is used as a test response compactor [2]. Some drawbacks of
the BIST structure are: (a) It is quite difficult for LFSRs to generate
test patterns that provide 100% or very close to 100% fault coverage.
(b) More than two erroneous responses cancel one another resulting in
a fault-free signature. Many technique including reseeding was
proposed [2.3] to improve fault coverage. Aliasing probabilities for
MISRs have also been analyzed applying various techniques [6].

coverage with this technique. Consequently, many hybrid BIST
schemes [8-10] have been proposed to provide better BIST patterns to
circuits under test (CUTS). In other words, BIST has been considered
a practical solution to overcoming the difficulties with VLST testing
[11-12].

As the number of transistors being integrated into chips increases,
more attention has been focused on SOC testing [5]. As a result, many
commercial hybrid BIST tools such as EDT [13-15], smart BIST [16].
Encounter Test [17], and BAST [18] have appeared on the market.
One key technique for hybrid BISTs is their handling of unknown
values. Masking logic is usually inserted between the test response
and compaction circuits. A masking technique using an N-detection
test set has also been proposed [19].

An X-compactor uses an EOR network that compacts test
responses and unknown values are propagated in limited test cycles
[20]. Furthermore. the convolutional compactor proposed by Rajski et
al. is a promising technique to compact test responses even if there are
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some unknown values [21]. It comprises non-feedback shift registers
and an EOR network that connects scan chains of the CUT to shift
registers. By arranging the EOR network, it can effectively compact
responses in excess of 100 times, while simultaneously detecting
double as well as odd-numbered errors. Convolutional compactors
still have difficulties in that they cause error masking, i.e., some errors
appearing in the test responses cannot be detected due to mutual
cancellation. Rajski et al. [21] evaluated error-masking probabilities
through extensive Monte-Carlo simulations.

In this paper, we theoretically analyze the exact and approximate
error-masking probabilities for convolutional compactors. First, we
apply weight distributions of binary linear error-correcting codes to
derive error-masking probability. We then show a fast calculation
technique of calculating 4-error and 6-error-masking probabilities.
Peak error-masking probabilities as well as asymptotical
error-masking values are also evaluated [22].

This paper is organized as follows. We briefly explain the basic
concept behind convolutional compactors and their error-masking
properties in Sec. 2. In Sec. 3, we discuss our analysis of
error-masking probability where we apply weight distributions.
Section 4 presents a faster calculation scheme for 4- and
6-error-masking  probabilities and various numerical examples.
Section 5 concludes this paper.

2. Convolutional compactors
Here, we will briefly explain the basic arrangement of
convolutional compactors, as well as error masking [21].

2.1 Basic arrangement of convolutional compactors

Figure 1 outlines the basic arrangement of a convolutional
compactor. Scan chains in the CUT are connected to any of the M
flip-flops (FFs) via the network of EOR gates, called an injector
network. Let S denote the number of scan chains in the CUT, and let b
denote the number of outputs from the convolutional compactor. The
FFs are therefore divided into b groups, and each of them is arranged
as an shift register with length M/b. The FFs are driven by the same
scan-shift clock as the scan chains in the CUT. Then, during N
scan-shift clock cycles, the CUT outputs S-N-bit test responses, while
the convolutional compactor outputs b-N-compacted test responses.
Therefore, the compaction rate for test responses on the convolutional
compactor is b/S.

Scan chain 1 is connected to FFs 1, 2, and 3 in Fig. 1, and is not
connected to FF 4. When an erroneous value is output from scan
chain 1, it is propagated into the three connected FFs. During

b outputs

S scan outputs

—— PP
N @
4
[ scan scan scan I
chain 1 chain2  chain3
CUT

Fig. 1. Example arrangement for convolutional compactor.
b=1,M=4,5=2)

succeeding shift clock cycles, the convolutional compactor outputs
errors three times.

We describe the connectivity of the injector network by S by b
matrix CN(x),

CN,\(x) CN,,(x) a
CN(x)= : ’
CN,s(x) CN,(x)
where CN;(x) is a polynomial over GF(2) at a degree of M/b -1,
CN,j(X)=¢; +Cjy XtoetCy gy X" (2)

Parameter c;jy is 1 if the scan chain j is connected to the -th FF in the
i-th shift register. For example, the injector network in Fig. 1 is
described as
1+ x+x?
CNG)=[1+x +x" | ®
1+x+x°

We also describe the injector network as M by S binary matrix, CN,

CN,
CN=| | @
CN,

Each of CNj, ..., CN, is an M/b by S binary matrix, i.e.,

Cia Cisi
oN,=| i ®)
Ciimib Cismip
In Fig. 1, CN is arranged as:
1 11
110
CN= : ©
1 01
011

External testers can detect errors when at least one erroneous value
is output. while a convolutional compactor may output more than one
erroneous value even if the error is only input from scan chains once.
This characteristic contributes to detecting multiple errors and
handling unknown values output from scan chains, despite greatly
decreasing the compaction rate of test responses.

2.2 Error masking and injector network

A convolutional compactor cannot always output erroneous values,
because there is the possibility that more than one erroneous bit will
occur to cancel each other. Let us explain this error-masking property.
Let EF(x) = [EF\(x) .. EFs(x)] denote a response vector that
represents the expected (error-free) values output from scan chains
during N shift clock cycles. Also, let ER(x) = [ER\(x) ... ERs(x)]
denote an error vector, which represents the positions of errors.
Elements in EF(x) and ER(x) are polynomials at a degree of N — 1.
Thus, an element in ER(x), ER(x), which is for the i-th scan chain, is
described as

ER(x)=¢,,+e, - x+...+e - x"", ()]

where ¢;; is | if an erroneous value is output from scan chain i at the
J-th shift clock cycle. Let RS(x) = [RS(x) ... RS;(x)] denote the output
response vector that represents bit sequences output from the
convolutional compactor. Each element RS;(x). representing responses
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from the i-th shift register, is a polynomial at a degree of N + M/b - 2.
Then, the output sequence is denoted as

RS(x)={EF(x)+ ER(x)}-CN(x). ®)
If RS(x) is equal to EF(x)-CN(x). the external tester determines that
errors do not occur. That is, if ER(x)-CN(x) = 0 despite ER(x) # 0,
errors will be masked. We call ER(x)-CN(x) the error indicator vector,
El(x).

For example, consider the injector matrix of M =4,b=1,5=3,
and N = 2, where CN(x) is given by Eq. (3). and quadruple errors e, .
€)1, €32, and e, 3 occur. Here, ER(x) is described as ER(x) = [1 1 +x
x]. Then,

1+x+x*
ER(x)-CN(x)=[1 1+x x] 1+x+x* |=[0] ©
1+x*+x°

i.e., these quadruple errors are masked.

To reduce the chances of errors being masked, the convolutional
compactor imposes some restriction on the arrangement of injector
networks [21].

(R1) Each scan chain has to be connected to the equal odd number
of g FFs. That is, out of ¢ . ..., Coimm» g €lements must be
1 and the others must be 0, for each i for 1 <i<S§.
(R2) Asetof i, j, k (1 <i,j<b,i#j, k=0)must not exist that
satisfies CN; ,(x) = #CN; 1(x). ..., and CN;s(x) = X'CN;s(x).
The first restriction guarantees that any odd number of errors can be
detected. The second restriction guarantees that any combinations of
double errors input at different clock cycles can be detected. For
example, consider double errors ;) and ej; occuring, where j # jo.
Here, the rows of El(x), El\(x), ..., El,(x). are arranged as

El (x)=x"""CN,,(x)+x""'CN,,(x) (<k<b). (10)

Then, if restriction (R2) holds, at least one from EI\(x), ..., El,(x) will
satisfy El(x) # 0. Consequently, these errors can be detected. Because
of these restrictions, convolutional compactors can always detect any
single error and 2, 3, 5, 7, ... errors.

3. Exact analysis of error-masking probability

Although the injector network satisfies restrictions (R1) and (R2),
convolutional compactors still present the possibility of masking an
even number of errors, and this reduces the reliability of test
compaction. In this section, we discuss an exact analysis of
error-masking probability for a given injector network.

As discussed in Sec. 2.2, whether ¢ multiple errors e;y i, ..., € are
masked or not depends on the output bit sequence, which is calculated
by the summation of shifted rows of CN(x), i"CN,;‘ 4@ A <Lr<n1<
k < b). Because the number of scan-shift clocks is N, we need to first
arrange error-masking matrix EM(x) that contains all possible rows,
each of which corresponds to one error. EM(x) is an S-N by b matrix,
and is described as

CN(x)

(11)
EM(x)= "Clﬁ(") .
x¥'CN(x)

Based on EM(x). we can determine whether error masking occurs
for a given set of ¢ errors.

[Theorem]

The t-bit error output during N shift-clock cycles, e; i, ..., € is
masked by the convolutional compactor if and only if corresponding ¢
rows in EM(x) are linearly dependent. i.e.,

EM;).1)5.i1(x) + ... + EMjy5,(x) = 0. (12)

[Proof] When ¢ errors €; ;. ..., e occur, each element of the error
indicator vector EI(x) is calculated as

El (x)= ix""'CNk_,-,xx). (1<k<b) (13
1=l

The u-th row of EM(x) is arranged as

EMu (x) = [xr“/x-rCNl.(um\ldS) xr“/S]CNMum\)dS)l (14)

Then, if f rows of EM(x), which are EMj.1)5.i1(%), ... EMie1)50i(X),
are linearly dependent,

3 x#ICN, () =0 (as)
r'=1

holds for each k (1 < k < b). Thus,
El,(x)=0. (1Sk<b) (16)

If these rows are linearly independent, a parameter k exists that
satisfies EI(x) # 0, and thus errors can be detected. [Q. E. D]

We can also describe the error-masking matrix as binary matrix
EM. Matrix EM is (M + b-(N — 1)) by S-N matrix, and described as

[CN, o0 0
0 CN, :
: 0
: 0 a7
0 0 CN,
EM =
CN, 0 0
0 CN,
0
: 0
0 0 CN,
For example, when N = 3 for the CN in Eq. (6), EM is arranged as
111000000
1 0111000 a8
EM = 10111011 1_
011101110
000O0T1 1101
000O0O0O0O0OO0OTI!]1

Considering BM, Theorem 1 is rewritten as:

[Corollary]

The ¢ errors during N shift-clock cycles, e;) jy. .... €, are masked if and
only if ¢ columns in EM. which are ((j1-1)-S+il)-th, ... and
((jt-1)-S+it)-th columns, are linearly dependent.

By calculating all the combinations of ¢ rows of EM(x) that satisfy
Eq. (12), we can obtain the number of combinations for t-error
masking, A,. This problem of obtaining A, is equivalent to calculating
the weight distribution of an (n, k) error-correcting code whose parity
check matrix is given by EM. Parameter n denotes the length of code
words in bits, and is equal to the width of EM, i.e., S-N. Parameter & is
the length of information bits, and is calculated as k=n — (M + b-(N -
1)). However, it becomes more difficult to check all combinations for
a larger N. because the number of combinations exponentially
increases as N increases.

It is known as MacWilliams identity [10] that the weight
distribution function of an error-correcting code, A(z) = Ay + Ajz + ...
+ A,Z". can be calculated from the weight distribution function of its
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dual code, B(z) = By + Bz + ... + B,Z". The dual code is also an
error-correcting code whose generator matrix is given by the original
code's parity check matrix.

[MacWilliams identity]
A(Z)=27"P (1 + z)B(I_—ZJ. 19)
1+z

The number of code words for the dual code is 2" ¥, while that for
the original code is 2¢. In convolutional compactors, b < S always
holds so that 2"~ < 2* when N becomes larger. Thus, it is
computationally feasible to calculate the number of combinations for
error masking with B, and Eq. (19) than directly calculating A,.

After calculating weight distribution A, we can obtain
error-masking probability as

P(E)=3 Ap'(-p) @
i=1

where p is the bit-error probability. Also, substituting Eq. (20) into Eq.
(19), we can directly calculate P,(E) from B,, as

P(E)=2" .3 BA-2p)-(-py @D
i=0

Figure 2 plots the calculation results for error-masking probability
for the injector network given by Eq. (3). The bit error probability p
was set to 0.01, 0.05, 0.1, and 0.5. Except for p = 0.01, error-masking
probability has a maximum value for N < 20. For example, when p =
0.05, the error-masking rate has a maximum value of 5.5E-5 at N = 8.
The figure also shows that when p is higher, the error-masking
probability decreases faster as N increases. This is because the chance
of at least one error being detected without masking was increased
when p and N were higher.

Figure 3 plots the calculation results for error-masking probability
forb=2,M =6, S = 16, and g = 3. The injector network is given as

11111111110000O0O00O0
11110000001 1100 O‘ 22)
CN= 10001110001 0O0TI1 10
01001 00110111111
001 0010101010101
0001001011001 011

which is the same as in Fig. 1 in Ref. [21]. Figure 3 has similar
tendencies as Fig. 2, i.e., the error-masking probability has maximum
values and decreases more quickly as N increases. The maximum
values were observed at N = | except for p = 0.01.

4. Analysis of 4- and 6-error masking probabilities
Analysis of the error-masking probability described in the previous
section gives an exact one for given parameters and injector matrix
CN. However, this still has the problems with computational
complexity because the number of code words for the dual code also
exponentially increases as N increases, although this is less than those
for the original code. The characteristics of the convolutional
compactor and Eq. (20), on the other hand, indicate that 4- and
6-error-masking occur most and second-most frequently, and that the
4-error-masking probability is significantly higher when p is small,
because 1, 2, 3, and 5 errors are not masked. In this section, we will
present a fast scheme to calculate 4-error-masking probability Py(E)
and 6-error-masking probability Pe(E), which is intended to
approximate overall error-masking probability as P(E) = P4(E) or

P(E) = Py(E) + P¢(E).

LE+0)
5 10 1
I.E-01 5 »
——— =001
. LE-02 | RR - ——p=0.05 |—]}
2 10 = 3 - -e--p0l
3 R R A o 3N .M --p=05
S 1EM e L KPR
o ""‘"-‘-l—-.,‘
£ b3
% 1E05 [ =
E x
5 LE06 e
5 ettt =
LE-07 =
LE-08 {—#
1LE-09
N
Fig. 2. Calculation results of error masking probability.
b=1,M=4,5=2,¢9=3)
LE+00
LE-01 *—p=001]
LE-02 - - - - p=005|
> LE03 — o-—p=0.1 |_|
3 1E04 p=03
3
S LE-05
&
g LE-06
g LBV L =
5 1LE-08 \
S 1E® \l\i\
LE-10 Q\o
LE-11
X
LE-12
0 5 10 15 20
N

Fig. 3. Calculation resuits of error masking probability.
b=2,M=6,5=16,x=3)

4.1 Fast calculation of 4-
probabilities

Let A4(N) denote the number of combinations for 4-error-masking
for a given N, i.e., the number of combinations of four columns in
EM that are linearly dependent. We can see that there is an interesting
correlation between A4(N) and A4(N + 1). For example, let us consider
the case where b = 1 and N = 1. Here, EM is equal to CN and the
number of combinations for 4-error masking is A4(1). We have to
calculate A4(1) and assume A4(1) = Y. Then, when considering A4(2),

EM is arranged as
EM = CN, o0 | 23)
0 CN,

and 6-error-masking

As we can see from Fig. 4, the leftmost S columns are exactly the
same as N = 1 and thus there are A4(1) combinations for 4-error
masking in these columns. Similarly, the rightmost S columns have
the same number of combinations. In addition, some new
combinations might exist. The number of new combinations for
4-error masking. ¥, must be checked, but one of the four columns has
to be taken up from the leftmost S columns. and another has to be
taken up from the rightmost S columns. Then, the combinations that
have to be checked is less than all possible ones, and A4(2) is
calculated as the summation of A4(1) + Yy and newly-discovered
combinations for 4-error masking.

Let Y4(N) denote the number of newly-discovered combinations for
4-error masking at N. Then, A4(N) can be described as
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7. (), (N=1)

N 4)
AN-D+Y 7,6 (N>1)
=1

A(N)=

We can also say that newly-discovered combinations Y4(N) are equal
to zero for large N.

[Lemma]
Yi(N) = 0if N> 2M/b - 2.

[Proof] Without loss of generality, let i; denote the scan-shift clock
where the earliest error is output from a scan chain. This error is
output g times during succeeding M/b scan-shift clock cycles. To
mask this error, at least two further errors have to occur until iy,
because two errors cannot mask each other. When the third error
occurs at iy, the convolutional compactor outputs at least one error
during the scan shift clocks between iy, and ijy.,. For the errors to
be masked, the third and the fourth errors have to share at least one
clock cycle, i.e., the fourth error has to occur until ¢ou,. [Q. E. D]

Table 1 shows calculation results for Y,(N) and A4N) for the
injector network of Eq. (18). The number of combinations that have to
be checked is much less than all possible combinations. Yi(N)
becomes 0 at N = 4. The bound in the lemma takes the worst case into
consideration, and thus Y4(N) usually becomes O at an N less than
2M/b - 2, depending on CN.

From the lemma, Eq. (24) can be rewritten as

v
Z‘(N—i)n(i), (N<2M 1b-2)
i=0

2M 1b-2

AN)={(N=2M 1b-2) 3 7,0)
i=0

2M 1b-2

+ > @M 1b-2-iy,G). (N>2M/b-2)
i=0

25)

That is, when N > 2M/b - 2, Ay(N) increases constantly by Y,(1) + ... +
Ya(2M/b - 2), and we can calculate A4(N) quickly only by calculating
Ya(1), ... YsQM/b - 2).

Based on A4(N), 4-error-masking probability P4E) can be
calculated as

P(E)=A(N)p*(1-p)"™, (26)
where n = S-N.
Similarly, 6-error-masking probability P¢(E) can be derived as
P(E)=A((N)p°(-p)"*. @n
where
N-1
DN = i)y, (i) (N<3M 1b-2)
i=0
3IM /b2 (28)
A(N)={(N=3M1b+2) Y ¥,()
i=0
M /b-2
+ Y (3M/b-2-i)y,(). (N>3M/b-2)
i=

For 6-error masking, the calculation for Y((N) requires more
computation than those for Y,(N), because we have to check
combinations in the 6 columns. Also, the bound of N, where Y,(N) =0
holds, becomes larger than in the lemma.

4. 2 Numerical Examples

Figure 4 plots the calculation results for 4-error-masking
probability for the injector network given by Eq. (3). The results for
error-masking probability, which are the same as in Fig. 2 have also
been plotted for comparison. Four-error-masking probability can

approximate overall error-masking probability well. Note that we can
calculate 4-error-masking probability for any N, once Y{2M/b - 2)
can be obtained. Thus, the figure is plotted within the range of N <
500, indicating there are also maximum values for p lower than 0.01.

Figure 5 plots the calculation results for 4-error-masking
probability P4(E) for the injector matrix given by Eq. (22).i.e., forb =
2, M =6,S = 16, and q = 3. Error-masking probability P,(E),
6-error-masking probability Pe(E), and P4(E) + P¢(E) have also been
shown for comparison. When p is lower than or equal to 0.01, P4(E)
can approximate P,(E), although they do not match well for p = 0.1.
Although P¢(E) is much lower than Py(E), P4(E) + P¢(E) significantly
fits closer to P,(E) under a higher p. We can also see that the existence
of maximum values for error-masking probabilities.

We can obtain N that corresponds to a maximum value for 4-error
masking probability by solving

A4(N+1) p4(] _p)S(N+l)-4 _AA(N)p‘i(]_p)SN—‘i =0(29)

Table 2 lists the calculation results for maximum 4-error-masking

Table 1. Calculation results of error masking probability.
b=2,M=6,S=16,x=3)

all combinations
N combinations | checked Y (N AdN)
1 1820 1820, 63 63
2 35960 32320 211 337
3 194580 124480, 102 713
4 635376 282176 0| 1089
5 1581580 505408 0 1465
6 3321960 794176 0 1841
1LOOE+00
1L.OOE-01 10 100 l&”
E L00E-02
< LooE-03
;’ 1.O0E-04 ’%_ ------- p=0.05
% au LOOE-05 f - p=0.1
5 % L0006 \ *::gg;
E 1.O0E-07 e p=0.1
é 1L.OVE-08 —= 2= D \ \\.
E  LO0E-09 b o
2 LoE0 — -—"\""‘:_-—‘\_
5 lwen =T \ ] \
LO0E-12 ke \. ’
N

Fig. 4. Calculation results of 4-error masking probability.
b=1,M=4,5=3,x=3)

1.E+00 l

1E-01 H p=0.001. PAE) |

LE-02 — - - = - p=0.01. P4(E)
------- p=0.1. P4(E)

1E-03 ,‘_"':-._w x p=0.01. Pu(E)

| E-04 —~ X X p=0.1. Pu(E)

= — = =p=0.1. P6(E)
1.E-05 p=0.1, P4(EEHPGE(E)
o ,m%é:ﬁw\
1E-07 \

X

error masking probability

1LE-08

N\
1E-09 /’:\f{d—ﬂ— AN
LE-10 X \

N

Fig. 5. Calculation results of 4-error masking probability.
b=2.M=6,S=16,x=3)
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probability and corresponding N. As p becomes larger. N
corresponding to maximum 4-error-masking probability becomes
smaller, and the maximum value increases. Also, as p increases, the
difference between Py(E) and P4(E) + P¢(E) becomes greater.

Finally, we will compare the 4-error-masking probability in our
analysis to the one shown in Ref. [21]. In Ref. [21], frequency of
4-error masking was derived as the ratio of a combination that caused

4-error masking from 100 million random combinations of four errors,

without regarding bit error probability. Then we also calculated the
frequency of 4-error masking in a similar way. Injector matrices were
randomly generated for given parameters under (R1) and (R2)
restrictions. Table 3 shows the frequency of 4-error masking under N
=1, g =3, and S/b = 100. Table 4 shows the frequency of 4-error
masking under b= 1, M = 16, S = 100, and g = 3. The applied injector
matrix might differ for analysis and simulations. Thus, our analysis
did not always accurately fit the simulation-based results. However, it
did have similar tendencies of masking errors.

5. Conclusions

In this paper we analyzed error-masking probability for
convolutional compactors. First, we explicitly derived the
error-masking probability for a given injector network by applying
weight distributions of binary linear error-correcting codes. Then, we

Table 2. Calculation results of error masking probability.
b=2,M=6,5=16,x=3)

p N (peak) P4(E) P4(E) + P6(E)
0.00001 6250| 8.64E-15 8.64E-15
0.0001 625] 8.63E-12 8.63E-12
0.001 63| 8.52E-09 8.52E-09
0.01 6| 7.49E-06 7.55E-06
0.1 1] 1.76E-03 2.22E-03

Table 2. Calculation results of frequency of error masking.
(N=1,9=3,5/b=100)

b
M 1 2 4 8
Ref. [21] | 2.40E-04| 2.43E-04] 2.70E-04
16 | analysis | 2.51E-04] 2.19E-04] 1.85E-04
Ref. [21] | 6.05E-05] 6.65E-05| 5.46E-05| 4.05E-05
20 | analysis | 6.83E-05] 5.59E-05| 5.37E-05| 4.62E-05
Ref. [21] | 4.39E-05] 2.08E-05] 2.02E-05| 1.67E-05
24 | analysis | 3.44E-05| 2.29E-05| 2.00E-05| 1.24E-06
Ref. [21] | 1.21E-05| 8.17E-06| 8.90E-06] 7.46E-06
28 | analysis | 9.95E-06] 9.80E-06]| 7.56E-06] 6.81E-06
Ref. [21] | 5.13E-06] 5.81E-06] 3.77E-06| 3.61E-06
32 | analysis | 5.87E-06] 8.12E-06| 3.55E-06] 3.60E-06
Ref. [21] | 3.08E-06{ 2.73E-06| 2.27E-06| 1.17E-06
36 | analysis | 2.55E-06] 2.24E-06{ 2.30E-06] 1.73E-06
Ref. [21] | 1.54E-06] 2.00E-06| 9.70E-07| 8.80E-07
40 | analysis 1.02E-06] 1.47E-06] 1.03E-06| 8.68E-07
Ref. [21] | 5.13E-07| 9.69E-07| 7.70E-07| S5.10E-07
44 | analysis | 5.10E-07| 7.42E-07| 7.96E-07 4.94E-08

Table 3. Calculation results of frequency of error masking.
b=2,M=6,5=100,9=3)

N Ref. [21] | analysis
1 2.40E-04 | 2.51E-04
5 5.66E-05 | 6.17E-05
9 1.69E-05 | 2.82E-05
13 5.61E-06 | 1.51E-05
17 2.13E-06 | 8.70E-06

presented a fast calculation scheme for 4- and 6-error-masking
probabilities. Numerical examples revealed that the calculated
error-masking probabilities were about the same as those obtained
through Monte-Carlo simulations, that 4-error-masking probability
could approximate overall error-masking probability when bit-error
probability was low, and that masking probability as a function of test
length had a peak value for constant error probabilities.
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