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A Cost-effective Technique to Mitigate Soft Errors in Logic Circuits
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Abstract The soft error rates (SER) in logic circuits increase quickly as devices scale. Existing techniques to
mitigate soft errors in logic circuits often incur large overheads. In this work, we propose a ’lightweight’ technique
that detects soft errors in logic circuits, utilizing the concept of temporal sampling. The technique adds some
modifications to the conventional pipeline to allow data to be sampled twice in time and compared for integrity.
The area, power, and timing overheads of modifying a 32-bit multiplier to support the technique are respectively
19.3%, 7.6%, and 6.4%. Comparing to existing soft error detection circuit techniques, our technique incurs lower
overheads. The technique is also applicable in scaled process technologies.
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1. Introduction

Energetic particles, such as neutron particles from cosmic
rays or alpha particles in packaging materials, when pass
through a semiconductor device could collide with the silicon
nuclei and generate multiple electron-hole pairs [1] [2]. Tran-
sistor nodes can collect these charges and sufficient amount
of accumulated charges can invert the state of a gate, a latch,
or a SRAM cell and cause errors. Such an error is called soft
ervor or transient ervor. Shrinking of device geometries, low-
ering of supply voltages make the devices more susceptible
to soft errors. Moreover, the number of gates included in
a chip increases rapidly, magnifying the system Soft Error
Rate (SER) (3].

Traditionally, memories have been the main victims of soft
errors. While memories can be effectively protected from
soft errors using rather simple techniques like error detect-
ing/correcting codes, interleaving layout of memory words,
mitigating soft errors in logic circuits is more challenging.
Common circuit techniques to mitigate soft errors in logics
usually impose high costs of implementation [4] [5]. The high
costs are intolerable in many commonplace applications and
soft errors in logics are simply overlooked in such cases.

However, SER in logic circuits increases rapidly with scal-
ing trend. Shivalkurmal et al.[6] found out that the SER
of individual logic circuits increases exponentially as devices

shrink. Similar effect is also claimed by other work [3]. Ig-
noring soft errors in logic circuits becomes increasingly not
a viable option.

Our work aims to provide a cost-effective technique to de-
tect soft errors in logic circuits. OQur technique involves repli-
cation of memory elements and clock to allow the results of
logic circuits to be sampled twice. The second sampling is
delayed after the first sampling by a time interval sufficiently
larger than the erroneous pulse width of a soft error. The
results of the two samplings are then compared and any mis-
match in the results indicates that soft error has happened
and disrupted the results. We verified that the technique can
be implemented with moderate overheads.

The rest of the paper is organized as follows. Section 2.
cxplains how soft errors occur and affect the results of con-
ventional logic circuits. Section 3. describes in detail how
a pipeline can be modified to support soft error detection.
Section 4. presents evaluation results. Section 5. discusses
related work. Finally, Section 6. concludes the paper.

2. Soft Error in a Conventional Pipeline

Figure 1-a illustrates a typical logic circuit, which repre-
sents a single pipeline stage. The logic circuit is sandwiched
between two memory elements. Static, edge-triggered circuit
style is assumed here and the vulnerable window of a flipflop
is defined as the time interval locates at the sampling edge
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of the clock, as shown in Figure 1-b. The durations from
the clock sampling edge to the left side and the right side
of the vulnerable window are respectively equal to the setup
time and hold time of the flipflop. The input from the first
flipflop (FF1) is sampled and then passed to the logic on
a clock edge. Proper design should make sure that the re-
sult computed by the logic is available at the beginning of
the vulnerable window of the second flipflop (FF2) and stays
stable during the window for being correctly sampled.

Let us consider the situation when a particle strikes on the
AND gate (G2) and temporarily upsets its output. An er-
roneous pulse appears at the gate output. The pulse could
propagate and modify the outcomes the later gates. If the
erroneous pulse finally reaches at the input of FF2 during
its vulnerable window (E2 and E3 in Figure 1-b), FF2 may

sample the incorrect data.
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Fig.1 Typical sequential logic circuit.

3. Proposed Technique

3.1 Concept

Our technique relies on the property that a static logic
circuit not containing any memory element, when struck by
a particle, could generate erroneous output but the effect is
transient. The logic is able to recover the right value by itself
after some amount of time. It can be explained as follows.
The induced charges at diffusion node (source or drain node)
erroneously change the output of the gate. However, as long
as the input voltage is unchanged, the diffusion node then
collects the charges from voltage source (GND or VDD) and
gradually swings back to the original voltage. The amount
of time for recovering is roughly equal to the width of the
spurious pulse generated due to the particle strike. The typ-
ical pulse widths, as we will show later, are in the order of
few hundred pico-seconds at current process technologies and

becomes smaller as devices scale.

Noteworthy, the property described above is true for static
logics but does not applies to dynamic logics. In dynamic log-
ics, if the output of a gate erroneously discharges from high
to low due to soft error during the evaluation phase, the gate
can not recover back to its high voltage until precharge phase.
Although dynamic logics are intrinsically fast, they consume
more power, are more susceptible to noise, and difficult to
design than static logics[7). Except the cases where per-
formance is critical, designers often favor static logics than
dynamic logics. We focus on soft error detection in static
logics in this paper.

The governing idea of our technique is to sample the out-
put of a logic circuit twice. The first sampling is followed by
the second sampling after some amount of delay. By setting
the delay between the two samplings sufficiently larger than
the erroneous pulse width, if any soft error happens and dis-
rupts the results of the first sampling, the result will recover
from the error by the time the second sampling takes place.
The results of the two samplings are then compared. Any
mismatch in the results indicates that a soft error has been
occurred. Next, we explain how a pipeline can be modified
to support this mechanism.

3.2 Pipeline Supporting Soft Error Detection

Figure 2-a shows a conventional pipeline. For simplicity,
the logic here contains one input and one output though we
could easily extend to the cases of multiple inputs and out-
puts. Figure 2-b shows the modified pipeline that supports
soft error detection. The modified pipeline has two clock
signals, namely master clock and slave clock, and two types
of flipflops, namely master flipflops and slave flipflops. Mas-
ter clock and master flipflops already exist in conventional
pipeline while slave clock and slave flipflops are newly added.
The slave clock, which has the delay D in related to the mas-
ter clock, goes in and controls slave flipflops.

The result produced by the logic is sampled twice. The
first sampling occurs at the rising edge of the master clock
where the result is sampled into the master flipflop and is
immediately available to the following pipeline stage. The
second sampling happens at the rising edge of the slave clock
and the result is stored in the slave flipflop. By providing the
time delay D between the master clock and the slave clock
large enough, we could guarantee that if a transient error re-
sults in incorrect output in the first sampling and the same
transient error dies away at the time the second sampling
taking place. Once such condition is satisfied, we can detect
the possible error by comparing the two results. If the two
results are identical, no error has happened. Mismatch in
the results indicates that error has happened and corrupted
data. Comparison of the results is carried by the XNOR, OR
gates as indicated in Figure 2-b.
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Fig.2 Conventional & Modified Pipeline.

Next, we are going to describe the constraints the modified
pipeline has to satisfy. We come up with two constraints: the
first one constrains the time delay D of the slave clock related
to master clock, and second one constrains the propagation
time of the shortest path in the logic.

Constraint for D

Proper setting of D, which is the amount of delay of the
slave clock in related to the master clock, is very important.
We derive the following formula that determines the lower
bound of D.

D g thotd + W + tset + tokew (1)

Here W is the maximum width of erroneous pulses caused
by particle strikes. thoid, tset are respectively the holding
time, setup time and clock-to-Q delay of flipflops. tskew is
the clock skew.

Equation 1 can be understood by consulting Figure 3. The
latest erroneous pulse that may disrupt the output of the first
sampling begins after the rising edge of the master clock by
an amount of time equal to flipflop hold time. For correct
detection, the error must recover before the rising edge of
the slave clock by an amount of time equal to the setup time
of the flipflop. The minimum value of D is therefore the sum
of the erroneous pulse width, the clock skew, the hold time
and the setup time of the flipflops.

Min-timing Constraint

Min-timing constraint guarantees that a flipflop already
finishes the second sampling of the old data by the time the
new data arrives at its input. Figure 4-a illustrates the case
where the min-timing constraint is violated. In this example,
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Fig.3 Determine the delay D of slave clock related to master
clock.

QL1 is ready by the time t., after the rising edge of the mas-
ter clock (tcq, or clock-to-Q delay, of a flipflop is the delay
from the rising edge of the clock until the sampled data is
available at the flipflop output). Q1 is then fed into the logic
and the resulting data is available at D2 as soon as Tnin
later, where Tiin is the minimum propagation time. The
new data arrives at D2 before the rising edge of the slave
clock and overwrites the old input of FF2. So in the sec-
ond sampling, FF2 samples the new input instead of the old
input, which is intended for.
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Fig.4 Min-timing constraint in modified pipeline.

On the other hand, Figure 4-b illustrates the case where
min-timing constraint is satisfied. In this case, when the
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FF2 has already finished the second sampling by the time
the fastest signal arrives at its input.
The min-timing constraint can be written as follows.

th + Tmin g D + thold (2)
and rearranged as
Tmin 2 D+ thotd — teg 3)

Buffers could be inserted into paths that are too short to
create enough propagating time required by Equation 3.

3.3 Consideration

3.3.1 Overheads

Area overhead. A modified pipeline requires the same

number of slave flipflops as master flipflops, therefore, dou-
bles the number of flipflops in conventional pipeline. Ad-
ditional clock, the slave clock, is also required. We could
choose to distribute slave clock globally, or to generate it lo-
cally from the master clock by taking the master clock and
inserting some buffers to create right amount of time delay,
as dictated by Equation 1. Another overhead is due to addi-
tional gates used for comparing the results. These overheads
depend on the numbers of inputs or outputs but do not de-
pend on the complexity of the logic. Finally, there may be
overhead due to buffers inserted to satisfy the min-timing
constraint (Equation 3).

Timing overhead. Though the modified pipeline im-
poses new min-timing constraint (Equation 3), it does not
impose any constraint relating to max-timing. Clock cycle is
therefore almost unaffected by modifying the pipeline. In the
modified pipeline, computation and synchronization of data
between pipeline stages are coordinated by the master clock.
Master flipflops can pass the data of the first sampling to the
following pipeline without waiting until the data is sampled
again and checked. Second sampling and checking of data
produced by one stage occurs in parallel with computation
of the next stage. The time overhead can be largely hid-
den in multi-stage pipeline. The checking overhead appears
explicitly only at the final stage where we must wait until
checking completes before committing the results.

Power overhead. Because power consumption becomes
increasingly important in VLSI designs, it should be consid-
ered as one important measure when evaluating the costs.
The logic between the pipeline flipflops and its switching ac-
tivity is almost unchanged by modifying the pipeline. The
power consumption may increase due to samplings of slave
flipflops and switching of the slave clock. Whether the power
overhead is small or large depends on the ratio of the amount
power consumed in the logic and the power consumed by
flipflops. If the logic is fairly large and consumes most of the
power, the power overhead of our technique can be small.

3.3.2 Error Detection Coverage

The modified pipeline described above can detect the soft
errors caused by a single particle strike, regardless of whether
a single or multiple adjacent nodes inside the logic are up-
set by the same strike. If multiple particle strikes occur in
the logic within a same clock cycle, the logic may require
more time to recover from the errors. The master and slave
flipflops could sample the same incorrect data, leaving the
soft errors undetected. However, particle strikes are infre-
quent events and the chance of multiple particle strikes oc-
curring inside a clock cycle is much smaller than that of sin-
gle particle strike[2]. So not covering multiple strikes only
slightly impacts the error detection coverage.

Although we mainly focus on soft errors that occurs in
the logic, a particle could strike on a flipflop and modify its
content. Replication of the flipflops in our technique also
enables such kind of errors to be detected.

4. Evaluation

The effectiveness of the technique depends largely on the
widths of soft error pulses (W). We first carried circuit simu-
lation to measure the values of W. Sharp currents that model
the currents induced by particle strikes are injected into an
inverter chain. The widths of the voltage responses are mea-
sured subsequently. The values of parameters characterizing
the currents induced by atmospheric neutrons at various pro-
cess technologies are obtained from [8].

The result is shown in Figure 5. At any given technology,
the erroneous pulse width varies for individual strikes. The
pulse width scales well with technology scaling. The scaling
of erroneous pulse widths is advantageous because it allows
the technique to be applicable at small process technologies
without introducing excessive time overhead.
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Fig.5 Erroneous pulse widths at different process technologies.

We next implemented a 32-bit, five-stage, non-Booth
recorded Wallace-tree multiplier. We then modified the ori-
gin multiplier to enable it to detect soft errors, following the



technique described so far. In the modified version of the
multiplier, the master clock and the slave clock are both dis-
tributed globally.
standard cell library basing on Hitachi 0.18 um process tech-

nology. Table 1 shows the values of setup time, hold time,

These circuits are implemented using a

and clock-to-Q delay of flipflops found in the library.

setup time (tset) 0.16 ~ 0.17 ns
hold time (tho1a) 0.06 ~ 0.065 ns
clock-to-Q delay (tcq) | 0.18 ~ 0.348 ns

Table 1 Setup time, hold time, and clock-to-Q delay of flipflops
in the standard cell library.

The maximum erroneous pulse width (W) in 0.18 um tech-
nology is set to 0.4 ns basing on the results in Figure 5. The
clock skew is set to 50 ps, which is an achievable value in
real design [9]. D and Tmin are respectively set to 0.64 ns
and 0.53 ns, which satisfy Equation 1 and Equation 2 even

in the worst case.

Before After | Overhead
Area 0.264 mm? 0.315 mm? 19.3 %
Power 1.18 W 1.2TW 7.6%
Timing | 4.5 ns|22.5 ns | 4.58 ns|23.94 ns |1.7%| 6.4%

Table 2 Area, power, and timing before and after modificating
the 32-bit multiplier.

Table 2 shows the overheads of the circuit before and after
modification for supporting soft error detection. The area,
derived from the final layouts, increases by 19.3%. The power
consumption, calculated by extracting nest lists from the lay-
outs and feeding them with randomly generated inputs and
then averaging, increases by 7.6%. The increases in area and
power consumption are caused by switching of slave clock,
slave flipflops as well as additional buffers inserted to satisfy
the min timing constraint.

The timing has two values. The first one is the clock cy-
cle. The second is the total latency when the inputs en-
ter in the first stage until the confirmed outputs are avail-
able at the fifth stage (~ clock cycle x number of stages +
2nd sampling, checking time at the final stage). Clock cycle
increases slightly in modified circuits. Because the time over-
heads of the second sampling and checking of the first to the
fourth stages can be overlapped, the increase in total latency
is small (6.4%).

5. Related Work and Discussion

Soft errors due to particle strike are long-recognized phe-
Tradi-
tional architectural transient-fault tolerant techniques such
as triple modular redundancy (TMR) or double modular re-
dundancy (DMR), or self-checking logics incurs high costs

nomena and have drawn a lot of research efforts.

[10]. Several interesting architectures for transient-fault tol-
erance in the context of superscalar processors[11], simul-
taneous multithreading processors [12], or chip multiproces-
sors [13] have been proposed in recent years. While perfor-
mance degradations are proved to be small, these techniques
still require large power overhead and introduce new levels
of design complexity.

Common circuit techniques to detect transient errors in
logics are parity prediction (5], or residue code checking [4].
According to [5], the overheads for implementing parity pre-
diction in a 32-bit multiplier are 63.7% in area, 19% in
latency, and 65% in power. The area overhead for imple-
menting residue code checking in 32-bit multiplier as high as
20.7% is reported in [4]. The evaluation results show that our
technique achieves comparable or lower overheads compared
to these techniques.

The most related work is done in [14], which pioneers the
idea of temporal sampling for eliminating soft errors. In[14],
the data is sampled three times then voted for majority. Al-
though such technique allows not only error detecting but
also error recovering, it requires three time more flipflops,
three clock tracks as well as voting circuits. More impor-
tantly, the result is available to next pipeline only after sam-
plings and majority voting finish, which increases the latency
considerably. Our technique, on the other hand, samples
data only twice and the data is passed to next pipeline as
soon as the first sampling finishes so that the overhead of
the second sampling can be hidden in a multi-stage pipeline.
In [15], the authors make use of temporal sampling to mea-
sure the widths of transient pulses.

6. Conclusion

In this paper, a circuit technique for soft error detection in
logics is proposed. The technique adds some modifications to
conventional pipeline to allow the data to be sampled twice.
The second sampling is delayed after the first sampling by
a time interval sufficiently larger than the erroneous pulse
width of a soft error. The results of the two samplings are
compared and any mismatch in the results indicates that a
soft error has happened and corrupted the data.

The timing constrains imposed by the technique were de-
rived. Real circuit design was carried to evaluate the over-
heads of the technique. The area, power, and timing over-
heads of modifying a 32-bit multiplier to support the tech-
nique are respectively 19.3%, 7.6%, and 6.4%. Comparing to
existing soft error detection circuit techniques, our technique
incurs lower overheads. The technique is also applicable in
scaled process technologies.
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