2005—S LDM—120 (8)
2005520

#HEEA BRUERES WHRERSE
IPSJ SIG Technical Reports

L NF Oy ZH A 7 IR EESLERANER O D
oy ZEFAE T VI Y XA
BakhtiarAffendi ROSDI! & Ealf
t HR L EREAEEE T R R R S 2 7 LR

T 152-8552 WRHERE AKX KL 2-12-1
E-mail: {{fendi atushi}@lab.ss.titech.ac.jp

HoEL F—s22709 94V ETERTALVYRAIBNREINF I 0y ¥4 I AWNRRLFHITNS,
INFIA Y IH A INARAREERETIE. oI ay JH A I NARRET S 250K ER- T, FROH)
PEaRER 7 a0y Z BN TIREZ G Tk, kRO EFEET S, v o7 ray 734 I VNRAEG» 625 FBORK
Nray VR 2 MEESE TROBZENTEIMZDLIRT NIV XLTIEINVF IOy I F A I NVNAREE
GHEBORN Oy JAMEZRDONZOBEUVEETS, £2T. FFRTHEIAF IO 9 I A INNREEDL
EgoRNIay 7 EERDLZTVTY XLERET S,

*—0—FK <NFray ¥ o0, ERPEREE, Bhray 7

An algorithm to calculate the minimum clock period of

a semi-synchronous circuit that contains multi-clock cycle path

Bakhtiar AFFENDI ROSDI' and Atsushi TAKAHASHI!

t Department of Communications and Integrated Systems, Tokyo Institute of Technology
Ookayama 2-12-1, Meguro-ku, Tokyo, 152-8552 Japan
E-mail: {{fendi,atushi}@lab.ss.titech.ac.jp

Abstract Multi-clock cycle path is a path from register to register where data transmission is more than one
clock-period. For a circuit that contains multi-clock cycle path, there are lower bound and upper bound of the
clock-period, which are different from a circuit that contains single-clock cycle path only. For a circuit contains
single-clock cycle path only, the minimum feasible clock-period can be obtained by graph-theoretic approach with
binary search and etc. If we use such approach to determine the minimum feasible clock-period of a circuit that
contains multi-clock cycle path, there are some cases that cannot determine the minimum feasible clock-period. In
this paper. we propose a new algorithm that determines the minimum feasible clock-period of a circuit that contains
multi-clock cycle path.

Key words Multi-clock cycle, semi-synchronous circuit, minimum clock-period

propagated with 2 or more clock cycles.

. Introducti
1. Introduction While, due to the difficulty of clock-distribution and the

A complete synchronous circuit is a circuit in which the
clock is assumed to be distributed periodically and simul-
taneously to each individual register. The clock frequencies
of complete synchronous circuits are decided based on the
maximum delay time of paths between clocked registers un-
der the assumption that all paths propagate signals within
one clock cycle. The assumption is invalid in many circuits
including multi-clock cycle paths on which signals can be

increase of instantaneous power consumption and noise, the
circuit design methodology without zero clock-skew is be-
coming popular. However, clock-schedule design methodol-
ogy for a circuit that contains multi-clock cycle path is not
established yet. In this paper. we propose an algorithm that
determines the minimum feasible clock-period in terms of
clock-scheduling of a circuit that contains multi-clock cycle
path.


研究会temp
テキストボックス


The minimum feasible clock-period in terms of clock-
scheduling is obtained by linear programming (1], by graph-
theoretic approach with binary search (2], [7], or by graph-
theoretic approaches without binary search [3]. The method
using graph-theoretic approach with binary search [7] is the
most practical fast clock-schedule design algorithm that has
been introduced. However, when we apply the algorithm (7]
to a circuit that contains multi-clock cycle path, there are
some cases that the algorithm cannot determine the mini-
mum feasible clock-period.

For a circuit that contains multi-clock cycle path, there are
lower bound and upper bound of the clock-period, which is
different from a circuit that contains single-clock cycle path
only. Therefore the range of feasible clock-period should be
taken into account in clock-schedule design.

In this paper, first, we discuss on the constraint of a cir-
cuit that contains multi-clock cycle path. The constraints
will take account the range of feasible clock-period in order
to make the circuit tolerable to the clock jitter. Based on
the constraints, we propose a new algorithm that can de-
termine the minimum feasible clock-period of a circuit that
contains multi-clock cycle path. Our proposed algorithm is
based on the algorithm that has been introduced in [7]. Our
algorithm uses the information from negative cycle in the
constraint graph to find the lower and upper bound of fea-
sible clock-period. By utilizing the value of bound, we will
determine the minimum feasible clock-period by the binary
search efficiently.

In experiments, we show that our proposed algorithm can
determine the minimum feasible clock-period of a circuit that
contains multi-clock cycle path efficiently, which cannot be
determined by the algorithm shown in(7]. We had imple-
mented the proposed algorithm to the reduction of the num-
ber of intermediate registers algorithm that has been intro-
duced in[4]. In experiments to a 8-bit pipelined adder, we
show that when we use the proposed algorithm, we can in-
crease the reduction of the number of intermediate registers.

2. Preliminaries

We consider a circuit with a single clock consisting of reg-
isters and combinatorial circuits between them. The clock-
timing s(v) of register v is the difference in clock arrival time
between v and an arbitrary chosen (perhaps hypothetical)
reference register. The set of clock-timings is called a clock-
schedule.

We assume the framework that a circuit works correctly if
the following two types of constraints are satisfied for each
register pair with signal propagation [1]:

Setup Constraint
s(u) = 5(v) £ T ~ dmax(u,v) 1
Hold Constraint

5(v) = s(u) £ dmin(u,v) (2)

where T is the clock-period and dmax(u, v) (dmin(u,v)) is the
maximum (minimum) propagation delay from register u to
register v along a combinatorial circuit.

Multi-clock cycle paths are often used in a conventional
zero clock-skew design in order to avoid the performance
limitation caused by the maximum signal delay between reg-
isters. The constraints for a register pair with signal propa-
gation defined as above are extended so that they correspond
to general situations [4]:

Setup Constraint

8(u) — 8(v) £ Bu,vT — dmax(u,v) 3)
Hold Constraint

3(v) — s(u) £ dmin(u,v) — au, T (4)

where By, and a.,, are given constants (Bu,, > au. 2 0).
Note that for a pair with single-clock cycle path, 3., and
au,, are given as 1 and 0, respectively. This formulation
enables us to handle multi-clock cycle paths, mixture of
positive-edge and negative-edge registers, latch based cir-
cuitry, and multi-clocks that have different periods, etc.

If ay, is O for every pair, the feasible clock-period has no
upper bound. That is, if T is feasible then for any T’ (TI 2T)
is feasible. However, the feasible clock-period has an upper
bound if o, is not 0 for some pairs.

From the above constraints, when the clock schedule
s(u), s(v) and the signal propagation delay dmin,dma: are
known, the minimum and maximum feasible clock-period
Tonin and Tma: can be determined by setup and hold con-
straint, respectively.

If the clock timings s(u), s(v) can be scheduled, Tyin and
Tmaz are dependent on each other. Therefore, to get a cir-
cuit that is tolerable to the clock jitter and etc., the circuit
needs to work correctly within clock period range Tin and
Tinoz. Thus, we have to minimize Tmin under the constraint
that the circuit is feasible at clock period range Tinin and
Tinaz- Let Tnaz — Tmin = 4, then the above constraints will
be:

Setup Constraint

8(u) = 5(v) £ Bu,v Trmin — dmax (4, v) (5)
Hold Constraint »

8(v) = 5(u) £ dmin(u, v) — 0w Tmin — Qu,né (6)

where § is the clock-period range. Therefore if the clock-
period range ¢ is given, by using the above constraints, clock
timings s(u),s(v) can be determined, so that the circuit
works correctly within Trmin and Trmin + 6.

In this paper, our target is to get a circuit that works cor-
rectly at target clock period range 8. By replacing dmin (u,v)
value with dmin(u, v) — au,.d at constraint (4), we can get a
circuit that tolerable at clock period range §. Therefore, in
this paper, we consider constraints (3) and (4).



12.2)

2.2
®

DNG 30K, Tmin=5 ANG

© @

Fig.1 (a) Constraint Graph G*.
(b) Circuit Graph CG* (Contains multi-clock cycle path).
(c¢) Min Clock Period Calculation by the algorithm shown
in (7).
(d) Min Clock Period Calculation by proposed algorithm.

These constraints are represented by the constraint graph.
The constraint graph G(V, E)) of a circuit is defined as fol-
lows: a vertex v € V corresponds to a register; a directed
edge (u,v) € E corresponds to either type of constraints;
edge (u,v) corresponding to the setup (hold) constraint is
called setup-edge (hold-edge), and the weight w(u, v) of (u,v)
is BuwT — dmax (¢, v)(dmin (¥, v) — @u,wT). It is known that
the constraints can be satisfied if and only if the constraint
graph contains no negative weight cycle [3]. The constraint
graph G when the clock-period is t is denoted by G;.

In a constraint graph, cycle weight w(C) is the sum of edge
weights of a cycle C. A negative cycle is a cycle where the
cycle weight is negative.

[Definition 1] Cycle coefficient of C is defined as k when
w(C) = kT +w, where T is the clock-period and k and w be
constants. A cycle where the cycle coefficient k is 0, greater
than 0 and less than 0, is said to be O-type, P-type and
M-type, respectively.

[Definition 2] For a cycle C where w(C) = kT + w in
the constraint graph, if C is P-type, Bound(C) = w/k. If
C is M-type, Bound(C) = —w/k, while, if C is 0-type,
Bound(C) = oo.

Example: For constraint graph G* shown in Fig. 1 (a),
cycle C1 = (u, w2)(w2,v2)(v2,u) (w(Ch) = 4T — 20) is P-
type, Bound(C;) = 5. Cycle C2 = (u,vl)(vl,wl)(wl,u)
(w(C2) = —T + 6) is M-type, Bound(C:) = 6.

[Theorem 1] Let C be a negative cycle in a constraint
graph G;. If C is O-type, then for any t', there are negative
cycles in the constraint graph G, .

[Theorem 2] Let C be a cycle in a constraint graph G. If
C is P-type, then for any t < Bound(C), there are negative
cycles in the constraint graph G:. While, if C is M-type,
then for any t > Bound(C). there are negative cycles in the
constraint graph G.

If the circuit is infeasible at given clock-period t, then a
negative cycle C in constraint graph G is found. From above
theorems, it is clear that, if the type of C is O-type, the cir-
cuit is infeasible for any clock-period t. While, if the type
of C is P-type (M-type). the Bound(C). which is larger
(smaller) than ¢, gives a lower (upper) bound of the feasible

Procedure MinClock( G(V, E) )
Input: constraint graph G(V, Ehoig U Esetup)-
Output:

(1) /* Compute initial lower and upper bounds */

minimum feasible clock period T

(2) Lgoy := MaX(y u)€Ey g Imaz (U, ).
(3) Laigr = maX(y, v)eEp g (dmar (#,9) = dmin(u,v)).
(4) L :=max{Lses, Lai}-
(5) U:= MaX(y,v)e Ep g Gmaz (U, V).
(6) /* Check lower bound L */
(7) if IsNoNegativeCycle(G,L ) = “Yes ” return L.
(8) /* Check upper bound U */
(9) if IsNoNegativeCycle(G,U ) = “No ” return co.
(10) /* Binary Search */
(11) while (U~ L >¢) do
(12) M:=U+L)/2
(13) if IsNoNegativeCycle (G, M) = “Yes "
(14)  thenU:=M,
(15) else L := M endif
(16) endwhile
(17) T:=U.
(18) return T.
Fig.2 Minimum feasible clock period algorithm of the circuit that
contains single-clock cycle path (7].

11,2]

1,2) 14, 6] “

(b)

1)NG 4)NG 3)OKTmin=4 2)0K

(a)

Fig.3 (a) Constraint Graph G2.
(b) Circuit Graph CG? (Consists only single-clock cycle
path).
(c) Min Clock Period Calculation by the algorithm shown
in(7].

clock-period.

Note that, in a constraint graph of a circuit that contains
single-clock cycle path only, there are two types of cycle that
are P-type and O-type, while in a constraint graph of a
circuit that contains multi-clock cycle path. there are three
types of cycle that are P-type, M-type and O-type.

3. Minimum Feasible Clock Period

3.1 Circuit contains single-clock cycle path only

There is no maximum feasible clock-period of a circuit that
contains single-clock cycle path only. That is, if Tinin is the
minimum feasible clock-period. then for any ¢ (t 2 Trnin) is
feasible.

The minimum feasible clock-period of a circuit that con-
tains single-clock cycle path only can be determined by
graph-theoretic approach with binary search (7] as shown in
Fig. 2. In the algorithm shown above. the maximum signal
propagation delay from register to the same register gives
a lower bound of feasible clock-period. The difference of


研究会temp
テキストボックス


the maximum and minimum signal propagation delay from
register to another register gives also a lower bound of fea-
sible clock-period. They adopt the larger of these two lower
bounds as an initial lower bound L of the binary search.
They adopt the maximum signal propagation delay between
registers as an initial upper bound U since it gives a feasible
clock-period even in zero clock-skew framework.

For the first step of the algorithm. the initial lower bound
L and upper bound U will be checked. If L is feasible the
algorithm is stopped and output L as the minimum feasible
clock-period. While, if L is infeasible, U will be checked to
confirm there are no O-type negative cycles. If there are
0-type negative cycle, the circuit is infeasible and the algo-
rithm is stopped. If U is feasible, the algorithm does binary
search by adjusting the lower and upper bounds to determine
the minimum feasible clock-period.

By using the algorithm shown in([7] let us determine
the minimum feasible clock-period of the circuit shown in
Fig. 3 (b). Note that, throughout this paper, the precision
€ used is 1. In this example, initial lower bound L = 2 and
initial upper bound U = 6. So, the algorithm does binary
search between 2 and 6 as follows:

Check L: When L = 2 in G2, cycle C; = (u, w)(w,v)(v, )
(w(C,) = 3T — 10) is negative, so next step is check the
initial upper bound.

Check U: When U = 6 in G2, there is no negative cycle, so
next step is check the half value ((U+L)/2).

Check M: When M = 4 ((6+2)/2) in G?, there is no neg-
ative cycle, so 4 will be new upper bound U.

Check M: When M = 3 ((4 + 2)/2) in G?, cycle C1 =
(u, w)(w,v)(v,u) (w(Ci1) = 3T — 10) is negative.
U — L = 1, return 4 as the minimum feasible clock-period T'.
The flow when we apply the algorithm is shown in Fig. 3 (c).

Since

For a circuit that contains single clock cycle path only, if
the circuit is feasible then the circuit is feasible at the initial
upper bound U, otherwise the circuit is infeasible. However,
for a circuit that contains multi-clock cycle path, although
the circuit is infeasible at initial upper bound U there are
some possibilities that the circuit is feasible at clock-period
t (t <U,t > U). When the initial upper bound U is infeasi-
ble, the algorithm [7] assumes that the circuit is infeasible for
any clock-period and stop. As we said earlier, the assump-
tion is correct for a circuit that contains single clock cycle
path only, while for the circuit that contains multi-clock cy-
cle path the assumption is incorrect. Therefore, the above
approach might miss the minimum feasible clock-period. For
example, let us determine the minimum feasible clock-period
of the circuit shown in Fig. 1 (b). Initial lower bound L = 4
and initial upper bound U = 8. So, the algorithm does bi-
nary search between 4 and 8 as follows:

Check L: When L = 4in G*, cycle C1 = (u, w2)(w2, v2)(v2, u)

(w(C1) = 4T —20) is negative, so next step is check the initial
upper bound.

Check U: When U = 8in G*, cycle Cz = (u,v1)(vl. wl)(wl, u)

(w(C2) = —T + 6) is negative and the algorithm is stopped.

1) Check M 1) Check M

1fC is Ptype ’
2) Cheek Bound(C)

' If C is Metype

2) Check M

L=Bound(C) U

(a)

Fig.4 (a) If C is P-type then L = Bound(C) and check L.
(b) If C is M-type then U = Bound(C).

The flow when we apply the algorithm is shown in
Fig. 1 (c). As you can see from the above example, the al-
gorithm [7] is stopped after checking the initial upper bound
U and assumes that the circuit is infeasible at any clock pe-
riod. The algorithm cannot determine the minimum feasible
clock-period which is 5.

3.2 Circuit contains multi-clock cycle path

There is maximum feasible clock-period of a circuit that
contains multi-clock cycle path. That is, if Trmin and Tiax
is the minimum and maximum feasible clock-period, respec-
tively, then for t (¢t < Tmin, t > Tmaz) is infeasible.

Our proposed algorithm does binary search between lower
and upper bounds same as in the algorithm shown in [7]. We
extend the algorithm (7] by introducing checking the type of
cycle when we detected the negative cycle in the constraint
graph.
negative cycle will be found. Based on the type of nega-

If the circuit is infeasible at given clock-period, a

tive cycle and the Bound value, our algorithm will adjust
the lower and upper bounds and determines the minimum
feasible clock-period.

For the initial value of lower bound L and upper bound U
of the binary search, we adopt the same approach as in the
algorithm shown in (7]. Initial lower bound L will be checked
whether it is feasible or not, if L is feasible, then L is the
minimum feasible clock period. Otherwise, a negative cycle
C is found. If C is O-type or M-type, the circuit is infeasi-
ble. While, if C is P-type then check an initial upper bound
U whether it is feasible or not.

If the initial upper bound U is feasible, then the algorithm
does binary search to determine the minimum feasible clock
period. Otherwise, a negative cycle C' is found. In case, C
is O-type, the circuit is infeasible.
Bound(C) is our new lower bound L and check whether L is

In case C is P-type,

feasible or not. If our new lower bound L is feasible then L
is the minimum feasible clock period, otherwise repeat until
L is feasible or type of C is O-type or M-type, where the
circuit is infeasible. In case C is M-type, Bound(C) is our
new upper bound U and check whether U < L or not. If
U < L, then the circuit is infeasible, otherwise, our algo-
rithm does binary search by adjusting the lower and upper
bounds to determine the minimum feasible clock period.

In binary search, the algorithm will check whether the con-
straint graph Gu(M = (U + L)/2) contains any negative
cycle or not. If there are no negative cycles in G, then
M will be our new upper bound U and continue do binary



Procedure MinClock( G(V. E) )

Input: constraint graph G(V, EroigUEsetup). target clock period
range §.
Output: minimum feasible clock period T

(1) /* Compute initial lower and upper bounds */
(2) Leis := MaxX(y u)eEy g Imaz(u.u).
(3)  Laif = maxX(y.v)eEp 14 (dmax (¥ v) = dmin (v, v)).
(4) L := max{Lsays, Laig}-
(5) U :=max(y.v)eE, 4 {(dmas(u,v) + s(u) = 5(v))/Buv}-
(6) /* Check lower bound L */
(7) if IsNoNegativeCycle(G,L) = “Yes " return L,
(8) else
(9) if (C is O-type or M-type) return oo.

(10) endif

(11) /* Check upper bound U */

(12) if IsNoNegativeCycle(G,U) = “No * then

(13) if (C is O-type) return co.

(14)  else if (C is P-type) then

(15) L := Bound(C).

(16) while (IsNoNegativeCycle(G,L) = “No ") do
17) if (C is O-type or M-type) return oco.
(18) L := Bound(C).

(19) if IsNoNegativeCycle (G, L) = “Yes ”
(20) return L.

(21) endwhile

(22) else /* M-type */

(23) U := Bound(C).

(24)  endif

(25) endif

(26) /* Binary Search */

(27) while (U~ L >¢) do

(28) M:=U+L)/2

(29)  if IsNoNegativeCycle (G, M) = “Yes ” then
(30) U:=M,

(31) else

(32) if (C is 0O-type) return oo.

(33) else if (C is P-type)

(34) L := Bound(C).

(35) if IsNoNegativeCycle(G,L) = “Yes ”
(36) return L,

(37) else

(38) if (C is O0-type or M-type) return oo.
(39) endif

(40) else /* M-type */

(41) U := Bound(C).

(42) endif

(43)  endif

(44) endwhile -

(45) T:=U.

(46) return T.

Fig.5 Minimum feasible clock period algorithm of the circuit that
contains multi-clock cycle path.

search. Otherwise, if there are negative cycles in G then
the algorithm will find a negative cycle C and check the type
of it. In case C is O-type, from Theorem 1, the circuit is
infeasible for any clock-period. From Theorem 2. in case C
is P-type then Bound(C) is our new lower bound L and
check whether L is feasible or not (Refer Fig. 4 (a)). If our
new lower bound L is feasible then L is the minimum fea-

sible clock period, otherwise, continue do binary search. In
case C is M-type then Bound(C) is our new upper bound
U (Refer Fig. 4 (b)). and continue do binary search.

The new algorithm to determine the minimum feasible
clock period of a circuit that contains multi-clock cycle path
is shown in Fig. 5. By using the proposed algorithm, let us
determine the minimum feasible clock period of the circuit
shown in Fig. 1 (b). Our target clock period range ¢ is 0. Ini-
tial lower bound L = 4 and initial upper bound U = 8. So,
the algorithm does binary search between 4 and 8 as follows:
Check L: When L = 4in G*, cycle C1 = (u, w2)(w2, v2)(v2, u)
(w(C1) = 4T — 20) is negative.

Check U: WhenU = 8in G'. cycle Cz = (u. v1)(vl, wl)(wl,u)

(w(C2) = =T + 6) is negative, Bound(C2) = 6, therefore 6
is our new upper bound.
Check M: When M =5 ((644)/2) in G*, no more negative
cycle and U — L = 1, so the minimum feasible clock period
is 5.

The flow when we apply the algorithm is shown in
Fig. 1 (d). The algorithm can determine the minimum fea-
sible clock period of the circuit which is 5.

4. Experiment

The algorithm proposed are written in C++ and imple-
mented on Pentium 4 (CPU 3Ghz, memory 513764Kb). For
comparisons, the algorithm shown in (7] is executed on the
same machine.

The data used in experiments are shown in Table 1.
Among circuits, blockl, 2, 3, 4 and 5 are extracted from cir-
cuits designed in an industry in 0.25[um] (blockl, 2, 3) and
in 0.18[um] (block4 and 5) technologies. While, 8bitadd1l
and 2 are parallel pipelined 8 bit adder using 0.35[um] tech-
nology. Among circuits, blockl, 2. 3, 8bitadd1 and 2 contain
multi-clock cycle paths. Feasible clock-period of block2, 3,
8bitadd1l and 2 have an upper bound, since they contain a
register pair with non-zero a.,,. In experiments, the timing
of each I/O pin is scheduled as well as registers. Target clock
period range é = 0.

In Table 2. the comparisons on computation times and
number of repetition of bellman-ford and negative cycle de-
tection (BF-ncd) algorithm between our proposed algorithm
and original algorithm [7] are shown. The computation times
of two algorithms are almost same if the number of repetition
is same. This shows that the overhead of computation of up-
per (lower) bound of the feasible clock period is small enough.
As shown in circuit block5 and 8bitadd2. our proposed algo-
rithm can reduced the repetition number of bellman-ford and
negative cycle detection algorithm. There are slight improve-
ment on the computation times of our proposed algorithm
due to the reduction on the number of repetition.

In Table 3, it is shown that our proposed algorithm can
determine the minimum (maximum) feasible clock period of
a circuit that contains multi-clock cycle path which cannot
be determined by the original algorithm (7].

The proposed algorithm is applied to the algorithm to re-


研究会temp
テキストボックス


Table 1 Statistics of circuits.

circuit | #reg #path max-d[ps] Tmin[ps] Tmaz[ps]
block1 1654 11697 11569 8323 0o
block2 6439 113101 11911 11654 11654
block3 7973 104136 11808 9553 12922
block4 7052 126559 8354 6256 oo
block5 | 12460 947082 12621 9665 oo
8bitadd1 54 126 2790 2407 2407
8bitadd2 62 136 2890 2231 2231

#reg : number of registers (including I/O pins).

#path : number of register pairs with signal paths.

max-d : maximum of maximum delay over clock-cycle.
Tmin (Tmaz) : minimum (maximum) feasible clock-period.

Table 2 Comparison on the Number of repetition of BF-ncd.

Proposed Original
circuit | Tmin[ps] Tmaz[ps] | time[s] X | time[s] X
blockl 8323 oo 005 1| 0.04 1
block2 11654 11654 095 1| 092 1
block3 9553 12922 206 1| 214 1
block4 6256 oo 1.50 1| 1.56 1
block5 9665 oo 31.55 8| 3791 14
8bitaddl 2407 2407 000 4| NA NA
8bitadd2 2231 2231 0.00 4| 0.00 12

time : time for computation.
NA : Not Available.
A : number of repetition of BF-ncd.

Table 3 Comparison on the Solution Determination.

Proposed Original
8[ps] | circuit | Trmin[ps] Tmaz[ps] | Tmin([ps] Tmaz[ps]
150 | 8bitaddl 2560 2710 NA NA
250 | 8bitadd2 | 2560 2810 oT OT

NA : Not Available. OT : Out of Time.
& : Target clock period range.

Table 4 Reduction on the number of intermediate registers.

Proposed Original [4]

§ | [Tmin» Tmaz) | #7eg. #Int. Area | #reg. #Int. Area
(ps) (ps) (%) (%)
[1710, Inf)) 41 16 100 41 16 100

150 | [2560, 2710] | 29 4 83 36 11 93
200 | {2560, 2760) | 37 12 95 38 13 96
250 | [2560, 2810] | 37 12 95 38 13 96
#treg : number of registers (excluding 1/O pins).

#Int. :
Area : Circuit area.

number of intermediate registers.

duce the number of intermediate registers shown in[4]. In
experiments, the timing of each I/O pin is fixed to 0, while
the timing of registers is scheduled. In Table 4, it is shown
that our proposed algorithm can removed more intermediate
registers compared to the original algorithm [4].

5. Conclusions

This paper introduces a new algorithm that can determine
the minimum feasible clock period of a semi-synchronous cir-

cuit that contains multi-clock cycle path. The result shown
that it can determine the minimum feasible clock period of a
circuit that contains multi-clock cycle path, which cannot be
determined by the algorithm shown in[7]. When we applied
the proposed algorithm to reduce the number of intermedi-
ate registers, it is shown that our proposed algorithm can
removed more intermediate registers compared to the origi-
nal algorithm shown in [4].

6. Acknowledgement

This work is supported by VLSI Design and Education
Center (VDEC), the University of Tokyo in collaboration
with Synopsys, Inc., Cadence Design Systems, Inc., Rohm
Corporation and Toppan Printing Corporation.

References

[1] J. P. Fishburn: “Clock skew optimization”, IEEE Trans. on
Computers, 39, 7, pp. 945-951 (1990).

[2] R. B. Deokar and S. S. Sapatnekar: “A graph-theoretic
approach to clock skew optimization”, Proc. International
Symposium on Circuits and Systems (ISCAS), Vol. 1, pp.
407-410 (1994).

[3] A. Takahashi and Y. Kajitani: “Performance and relia-
bility driven clock scheduling of sequential logic circuits”,
Proc. Asia and South Pacific Design Automation Confer-
ence (ASP-DAC), pp. 37-42 (1997).

[4] B. A. Rosdi and A. Takahashi: “Reduction on the usage
of intermediate registers for pipelined circuits”, Proc. the
Workshop on Synthesis and System Integration of Mixed
Technologies (SASIMI 2004), pp. 333-338 (2004).

[5] E. L. Lawler: “Combinatorial Optimization, Networks and
Matroids”, Holt, Rinehart and Winston, New York (1976).

[6] R. B. Deokar and S. S. Sapatnekar: “A fresh look at re-
timing via clock skew optimization”, Proc. 32nd DAC, pp.
310-315 (1995).

[7] A. Takahashi: “Practical Fast Clock Schedule Design Algo-
rithms”, % 18 [E Eg& 2 v 257 LN T—2 ¥ 2y TRE,
pp.515-520, 2005 4 4 f1 26 H.





