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Abstract We propose a fast hardware algorithm for calculating modular multiplication. This algorithm is based

on the recently proposed bipartite modular multiplication method. The calculation of the modular multiplication

is performed in the KT-residue system which enables the splitting of the multiplier into two parts which can then

be processed in parallel. In the hardware algorithm that we propose, the addition of the partial products to the

intermediate accumulated product is pipelined in order to reduce the critical path delay. A radix-4 version of the

hardware algorithm is given and its hardware implementation is discussed.
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1. Introduction

Most of the public-key cryptosystems such as RSA [8], El-
Gamal [2], and others, are based on operations in modular
arithmetic. One of the operations that are heavily used is the
modular multiplication of large integers. Because of its com-
putational intensity, many efforts have been directed towards
developing fast algorithms and hardware implementations to
speed up this operation.

There are two well known approaches for calculating the
modular multiplication. One is based on the interleaved
modular multiplication algorithm where the multiplier is
processed from the most significant position[1],[9]. The
other one is based on the Montgomery algorithm where
the multiplier is processed from the least significant posi-
tion [6], [7], [11].

We recently proposed a method called bipartite modu-
lar multiplication (BMM) which combines the two previous
methods to further speed up modular multiplication [4]. The
calculation is performed in the KT-residue system which en-
ables the splitting of the multiplier into two parts. These two
parts can then be processed in parallel. One part of the split
multiplier can be processed using the interleaved modular
multiplication algorithm while the other part can be pro-
cessed using the Montgomery algorithm. When the perfor-
mance of these two algorithms are similar and the multiplier

is split into two parts of equal size, this method theoretically
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doubles the speed compared to either the interleaved mod-
ular multiplication algorithm or the Montgomery algorithm
when applied to unsplit operands.

This paper proposes a new hardware algorithm based on
the BMM method which enables the pipelining of the inter-
mediate calculations in a natural way. This is accomplished
by applying the shift operations, the modular reduction and
the Montgomery reduction to the multiplicand instead of
applying them to the intermediate accumulated product. A
radix-4 version of the algorithm that can be implemented
with similar performance and with less hardware require-
ments to that of a pipelined radix-16 Montgomery multi-
plier 7] is presented and discussed.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the BMM method. Section 3 introduces the
new hardware algorithm and explains its hardware imple-
mentation. A radix-4 version of the hardware algorithm is
given as an example and its hardware implementation is dis-
cussed in Section 4. Section 5 contains our concluding re-

marks.
2. Bipartite Modular Multiplication

The recently proposed BMM method [4] enables the split-
ting of the multiplier into two parts which can then be pro-
cessed in parallel reducing the time complexity. We consider
the modulus M to be an n-digit integer in ra}dix-r so that

n—1

T < M < r" and ged(M,r) = 1. If U is an integer in
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Fig. 1 Mapping between the original residue system and the KT-residue system
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Isomorphlsm between the original integer set Zx4 with the

ordma.ry modular multiplication denoted with the symbol x,

and the KT-residue system Z, with the operation ®, holds |
a,s 1llustrated in Fig. 1. In the figure, X and Y are the images |

of U and V respectively.

The advantage of using the described representation be-
comés e}vxdent if we consider the multiplier Y split into two
parts Yy and YL so that ¥ = Yy -r*" +Yz. Then, the multi-
plication modulo M in the KT-residue system of the images
X and Y can be efficiently computed using the following
identity:

FE TR

X@Y =

(X Yymod M+ X Yy -r"*" mod M) mod M

;The term X - Yy mod M can be calculated using the in-

terleaved modular multiplication algorithm while the term

" mod M where aisa ratlonal number

and M. Since M is odd for |
, the primalty

which can be calculated using

X Y, -ro7
gomery algorithm. Since the split operandé Yy and Y are
shorter in length than Y,‘ the calculations X - Yy mod M and
X Y, .r/on
culating the ordinary modular multiplication or the Mont-
When

these two calculations can be performed with similar per-

‘mod M ~can be calculated using the Mont-

mod M are performed faster than either cal-
gomery multiplication with the unsplit operands.

formance and the multiplier is split into two parts of equal
size, the above equation shows that it is theoretically pos-
sible to achieve a maximum speed of twice that of either of
these two algorithms when applied to unsplit operands. Fur-
thermore, compared to the Montgomery method, conversion
speed between the original integer set and the KT-residue
system is potentially doubled, and precomputation of con-
stants is no longer necessary. It is also worth noticing that
any technique to speeds up the calculation of X - Yy mod M
and X - Yz - r~%" mod M can be used independently in this
method.

3. Pipelined Bipartite Modular Multipli-
cation

In this section we present a new hardware algorithm for
modular multiplication based on the BMM method. The fea-
ture of this hardware algorithm is that it enables the pipelin-
ing of the intermediate calculations reducing the clock cycle
time. This is accomplished by initially storing copies of the
multiplicand into two variables and performing a shift oper-
ation and a modular reduction on one variable and a shift
operation and a Montgomery reduction on the other variable
instead of applying a shift operation and either of the reduc-
tions to the intermediate accumulated product. For simplic-
ity, we describe the algorithm for the parameter o = 1/2. We
assume hereafter that n'is an even number. When n is odd,
the algorithm that we will describe works by concatenating
a 0 digit on the most significant position of the multiplier.

In order to enable the pipelining of the intermediate op-
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erations, we need two variables of n digits of length, L and
R, which are initialized to the value of the multiplicand X.
Then, at each iteration, L is shifted to the left by one digit
position and reduced modulo M. Similarly, R is shifted to
the right by one digit position and reduced modulo M us-
ing the Montgomery reduction. We also need two variables A
and B for storing the split two parts of the multiplier. A and
B initially store Yy and Y7 respectively. Then, L and A are
used for generating the partial products of X - Yz mod M,
whereas R and B are used for generating the partial prod-
ucts of X - Y, -7~ % mod M. A and B have § +1 digits of
length. The i-th digit (1 =0,1,---, §) of A is denoted by a:.
Namely, A = Zio a; -r*. Similarly, B = Z?;O b; - r'. The
digits of A are scanned from the least significant position
while in B, the digits are scanned from the most significant
position. The scanning procedures can be implemented using
shift operations. We use a variable C of n digits of length to
store the result of the addition between the generated partial
products. A variable D of n digits of length is used to store
the intermediate accumulated product.

Below is the radix-r pipelined hardware algorithm based
on the BMM method. In the algorithm, {0,Yx} and {0,Yz}
mean that a 0 digit has been concatenated to the most sig-

nificant position of Yy and Y7 respectively.

[Hardware Algorithm PBMM)]
(Pipelined Bipartite Modular Multiplication)
Inputs: M : "' < M <r", ged(M,r) = 1 and r = 2*
X,Y:0£XY<M
Output: Z=X-Y -r ¥ mod M
Algorithm:
Step 1: Lo:= X; Ry:=X; M .= M;
"A:={0,Yn}; B:={0,YL};
[*Y =Yy 1% +YL %/
Step 2:
Step 2-1: Dg := 0;
T, :L, := Lo - r mod M;
R, := Ro/r mod M;
Co := (ao'Lo-l-b% Ro) mod M
Step 2-2: for j:=1to 3 do
T1 :Lj+1 = LJ - mod M;
Rj+1:= R;/r mod M;
Cj:=(a; - Lj+
b.g__j - R;) mod M,
T, :Dj :=(Cj-1 + D]'_l) mod M;
endfor
Step 2-3: T3 : D34, :=(C3g +D%) mod M;
Step 3: Z := D%+1§

In Step 1, initialization of variables takes place. In Step 2,
we process the upper part of the multiplier, i.e. A, from the

least significant position and the lower part of the multiplier,

“E

."'g’

Fig. 2 Dependency graph of the tasks in Step 2 of Hardware Al-
gorithm PBMM

i.e. B, from the most significant position. In contrast to the
interleaved modular multiplication algorithm and the digit-
serial Montgomery multiplication algorithm where the inter-
mediate accumulated product is shifted and reduced mod-
ulo M at each iteration, we shift the variables that initially
stores the multiplicand instead. In Step 2, two atomic tasks
are performed in parallel: Task T executes the shifting of
the variable L by one digit position towards the most sig-
nificant position and the modular reduction on this shifted
value. It also executes the shifting of the variable R by one
digit position towards the least significant position and the
Montgomery reduction on this shifted value. This task also
generates the partial products, adds them and applies the
modular reduction to this added value. The result is then
placed into variable C. Task T> executes the addition of
the previous result of C to the value of the intermediate
accumulated product stored in variable D. Then, modular
reduction is applied to the result of this addition and the
result is placed into D. One step, i.e. Step 2-1, is required
until the two tasks are executed fully in parallel. One extra
step, i.e. Step 2-3, is necessary for obtaining the final result
placed into D. Step 2-2 is the core of the algorithm. In this
step, the two tasks are executed in parallel. The dependency
graph for the tasks in Step 2 is depicted in Fig. 2.

In Step 3, the result is obtained from the variable D. If we
implement the hardware algorithm so that all the operations
contained in one single iteration of each step are executed
in one clock cycle, a modular multiplication is calculated in

% + 4 clock cycles.
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Fig. 3 Block diagram of a PBMM multiplier

A modular multiplier based on the new hardware algo-
rlthm consists of seven registers and four adders. The rest
of the components are multiplexers. A block diagram of a
radlx—r dxgxt multiplier based on this hardware algorithm is
glven in Fig. 3.

Compa.red to the conventional interleaved modular mul-
txplxcatlon algorithm and the digit-serial Montgomery mul-
tlphcatlon, where the modular reduction is performed after
shxftmg the result of the addition between the generated par-
tlal product and intermediate accumulated product, the pro-
posed ha.rdware algorithm does not require a shift operation
neither on the addition of the generated partial products nor
0_1; the 'accumulation of the partial products. Thus, modular
re&ucfion can be applied to the results of these operations
1ndependently This reduces the number of candidates for
selectmg the multiples of the modulus M required for per-
formmg the modular reduction, thus, reducing the critical

plath‘delay.
- 4.~ A Radix-4 Implementation Example

- Inthls section we present a radix-4 implementation exam-
‘plle“o_f the proposed hardware algorithm. In this example,
the‘ ;adix r= 4. We denote with n’ the number of bits re-
qulred to represent the modulus M. Then, 2" TleM<2v
aud n = [n /2].

(_§D2) [10] is employed to all additions and subtractions so

The radix-2 signed-digit representation

they can be performed without carry propagation. The

S 2 representatxon uses the digit set {I1,0,1} where 1 de-
notes —=1. An (n'+1)-digit SD2 mteger L=y, ly_y, -, l]
(l € {1 0,1}) has the value E:‘ o li-2°. Addition of two SD2

numbers can be performed without carry. propagation [10].
In cryptographic applications, modular multiplication are
usually required sequentially. In order to enable the di-
rect feedback of the output into the inputs and avoid the
conversion from the SD2 representation into the binary rep-
resentation in each multiplication, we represent the inputs
and the output using the same SD2 representation. Then,
X, Y and Z are SD2 numbers of n’ + 1 digits in the range
[-M+1,M -1].

To accelerate the computations, 2-bit signed digit Booth’s
recoding algorithm [9] is applied to the variables A and B.
Note that an ("—’)-bit binary‘ multiplier is recoded into a

7 + 1 digits. The i-th recoded digit of
The i-th recoded digit of B is denoted
as b;. The recoding rule for the variable B is shown in Ta-

radix-4 number of 2

A is denoted as a;.

ble 1. The same recoding rule can be applied to variable A.
However, this rule can be simplified if we take into account

the direction that carry propagates.

Table 1 The recoding rule for B in Step 2

(a) Phase 1

boit1b; b2i—1 beitr | bt;
11 - 11 (b) Phase 2
10 non-negative | 0 2 bt;be; | b;
negative 1 2 21/21 | x
11 - 1 1 11/20 |2
01/11 - 0 1 01/10/21 | 1
00 - 0 | o 11/00/11 | 0
01/11 - 0 |1 21/10/01 | 1
10 non-negative | 1 2 20/11 |2

negative 0 2

11 - 1 1

Following the notation of the previous section, the variable
L involved in the calculation of X - Yi mod M, represents a
number vy € Zny as an SD2 number of (n’ + 1) digits which
satisfies ~d- M < L <d-M and L = v (mod M). dis a
parameter and can be any number that satisfies g <d< §
We explain how these values are derived. The shifting pro-
cedure and the modular reduction are based on the following

recurrence.
Lityy:=4-Lj-p; M

We select p; from {2,1,0,1,2} so that modular reduction
can be performed by adding 0 or +M or +2M which can be
obtained from shifts and complements of the modulus. In
order that L; stays in the range —d- M < L < d - M, the

following inequality must hold:

4-d-M-2-M<Ld- M



From this inequality, d < % Now, we calculate how many
digits we need to check for determining p;. Assume that we
compare 4- L; with £ and +3M down to the k-th posi-
tion. We need to find the largest k that satisfies the following
inequality:

2.2°<(d-4)-M

Since M can be 2" ~!+1, the inequality k £ n' —2+log,(d—
%) must hold. Since d £ %, k is at most n' — 5. Conversely,
kisn' — 5 when d 2 2. The Robertson’s diagram for the
modular reduction procedure can be found overleaf in Fig.
4.

We will now explain the procedure of calculating the mod-
ular reduction. The selection of p; from {2,1,0,1,2} is per-
formed by comparing 4- L; with :i:%’— and +3M down to the
(n — 5)-th position. If we define top(W) as a function that
evaluates the most significant digits down to the (n — 5)-th
position of a number W, then the rule for selecting the values

for p; is as follows.

if top(L;) < —top(3M)

if —top(3M) < top(L;) < —top(¥)
—top(%) < top(L;) < top(%y)

if top(%) < top(L;) < top(3M)

if top(L;) 2 top(3M)

N o= O =N
-
=

top(L;) can be calculated from the most significant 6 digits
of L. We can calculate top() from the most significant 4
bits of M. We can calculate top(%M ) from the most signifi-
cant 5 bits of M so that |3M —top(3M)| < 2 ~4. Since M
is a binary number, the addition of +M or +2M for obtain-
ing L;j41 is simpler than the conventional SD2 addition. For
details, see[9].

The variable R involved in the calculation of X - Yy -
7% mod M represents an SD2 number of n' 42 digits which
satisfies —2M < R < 2M. The shifting operation and the
Montgomery reduction, i.e. the calculation of R/4 mod M,
is performed by using the function MQRTR(R, M). For the
details of how this function is implemented, see [3].

For the addition of the partial products. ie. Cj :=
(aj-Lj+bn_;-R;) mod M, we use a more redundant repre-
sentation to make the modular reduction procedure simple.
The variable C that stores the result of the addition after
performing the modular reduction represents an SD2 num-
ber of n’ + 2 digits which satisfies —2M < C < 2M. After
adding the partial products, we add 2M or 0 or 2M’, ac-
cordingly as the value of the number formed by the three
most significant digits of &; - L; + b; - R; is negative or zero
or positive. M’ = [10m),_,..m11] is a (n' + 1)-digit SD2
number where m/ is 1 or 0 accordingly as m; is 0 or 1, and

has the value —M. For the details of this modular addition

procedure, see [10].

The result of the previous addition is added to the inter-
mediate accumulated product stored in variable D. D also
represents an SD2 number of (n' + 2) digits _which satisfies
-2M < D < 2M. Modular reduction is performed in the
same way as described for the addition of the partial prod-
ucts. The result obtained in Step 3 can be reduced into the
range —M < D < M by executing a shift operation and a
modular reduction using the same rule. Then, the final re-
sult can be obtained from the most significant n’ + 1 digits
of D.

The radix-4 version of the hardware algorithm described
here can be implemented using four redundant modular
adder, where two of them are simpler, three registers for
storing SD2 numbers, one SD2 shift register for storing the
intermediate accumulated product, one register for storing
the modulus M and two SD2 shift registers for storing the
split two parts of the multiplier. Taking into account that
the SD2 adder can be implemented with carry save adders [5],
and that the modular reduction procedure used in our _imple—
mentation requires an extra delay of one AND gate, a mod-
ular multiplier based on the proposed hardware algorithm
can be implemented with similar performance to a radix-16
pipelined Montgomery multiplier [7].

In our implementation, the modular reduction of the vari-
ables that initially store the multiplicand can be performed
in parallel to the addition of the generated partial products
without increasing the clock cycle time. This enables the
reduction of the number of stages for pipelining, and thus,
the number of registers to latch the intermediate results be-
tween the stages. For obtaining similar performahce, the pro-
posed modular multiplier can be implemented with two less
stages for pipelining and requires one less redundant adder,
three less n-digit registers for storing redundant binary num-
bers and less complex multiplexers compared to the radix-16
modular multiplier of [7].

With our implementation, transformation back and forth
between the ordinary integer set and KT -residue class rep-
resentation can be performed with the same hardware. Fur-
thermore, precomputation of the modulus is no longer nec-

essary and postprocessing is simplified.
5. Concluding Remarks

We have proposed a fast hardware algorithm for calculat-
ing modular multiplication based on the recently proposed
bipartite modular multiplication method. The addition of
the partial products to the intermediate accumulated prod-
uct is pipelined in order to reduce the critical path delay.
Transformations back and forth between the ordinary repre-

sentation and the K'T-residue system can be performed using




. ALy

. 4L;+/M,
d
S N
By=0
-14
-d

Fig. 4 Robertson’s diagram for the modular reduction on L

the same hardware. We have presented a radix-4 implemen-
éﬁi’oh""éi’camp]e of the hardware algorithm as an’ efficient al-
ternatﬁ/e for ¢alculating modular multiplication. Although
we  have described the proposed algorithm for a = 1/2 (which
means  that the multiplier is split'into two parts of equal size),
a dlﬂ’erent ‘value can be assigned for this parameter when the
"’b’dular rediction and theé Montgomery reduction are im-

pleménted with different critical path delays. In such a case,

(!

4

and’one of the reduction operation is calculated using higher

be' calculated from the difference of the performance
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