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Abstract Aiming at reducing the power consumption of future VLSIs, small and fast arithmetic units are
required. Since multipliers play an essential role in recent microprocessors, this study focuses on multipliers
and discusses the effects of bit slicing technique on the latency and hardware cost. In particular, partial
product generation by Booth method, partial product reduction by array and reduction tree, and final addition

by a carry-independent adder are examined.
Key words Low-power, Multiplier

1. Introduction

In recent years, a large increase in power
consumption of VLSIs has been linked to
heat-induced problems such as hardware damage
and performance degradation of microprocessors [1].
Many research efforts have been put into
sophisticated cooling systems and power saving
techniques such as micro-fluids and power gating,
but these provide only temporary solutions in an age
when the demand for ever faster and smaller
processors is growing [2], [3]. Moreover, it is
predicted that for CMOS technology of less than
70nm, static power consumption will constitute
more than half of total power consumption [4]. In
order to cut back on total power consumption
effectively, it becomes important to shift our focus
from dynamic power to static power. This rise in
static power consumption can be attributed to an
increase in leakage current, which is proportional to
the number of transistors in a circuit. Therefore,

there is a need to reduce the number of transistors.
In view of this, our research investigates the
potential of bit slicing and small size circuits [5], [6]
in reducing static power while keeping performance.
In particular, emphasis is placed on the arithmetic
unit as it is the basic building block in processors.
Here, we focus on the multiplier because it plays an
essential part in processors and occupies a large
area. Our goal is to design a fast and low power
multiplier. The rest of this paper is organized as
follows. In Section 2, we describe downsizing
methods for the multiplier. Section 3 covers the
design details of our proposed multipliers. In
Section 4, we evaluate our designs and discuss our
findings. And finally, Section 5 concludes this paper.

2. Downsizing Methods for the Multiplier

The multiplication process can be divided into 3
stages, namely the partial product generation (PPG)
stage, the reduction stage and the final addition



stage. Fig.1 shows the structure of a conventional
multiplier. The Booth method is often used in the
PPG stage because of its ability to reduce the
number of partial product rows generated before the
reduction stage [7]. Although a higher radix Booth
would result in a lesser number of partial product
rows being generated, this comes at the cost of extra
hardware in the PPG stage. For the reduction stage,
the tree method [8] is hugely popular because of its
high reduction speed. While the Wallace Tree suffers
from an irregular structure and wiring complexity,
the Binary Tree, which uses 4-2 compressors, on the
other hand offers good regularity as well as design
flexibility that are conducive for bit slicing [8], [9].
Furthermore, the array method [8], an alternative
to the tree method, now demands a closer look with
the implementation of bit slicing.
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Fig. 1: Conventional Multiplier.

Fig.2 shows the process of bit slicing used in the
proposed method. By splitting an n-bit data into
four (n/4)-bit sets and processing them in parallel,
the latency is reduced compared to using one large
arithmetic unit. Processing the sets in series with
one small arithmetic unit instead allows for a
significant reduction in hardware. This is achieved
by placing a selector before the arithmetic unit to
channel the sliced bits in order. It is assumed that
the single small arithmetic unit processes at a clock
rate that is 4 times faster than the previous ones.
Applying this technique to a multiplier shown in
Fig.1 would result in Fig.3. Here, the PPG is
replaced by the Booth Encoder. By selecting a fixed
length of bits each cycle, the size of both the
reduction unit and final adder can be reduced
accordingly as shown in Fig.3. This length of bits is
pre-determined by the size of the Final Adder used.
The Distributor in the later stage rejoins the output
bits from the final adder to yield the original length

of result.
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Fig. 2: Downsizing of Circuit Scale by Bit Slicing.
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Fig. 3: Proposed Multiplier.

In this paper, the relation of Booth Order with bit
slicing degree, hardware cost and latency for two
reduction schemes: Binary Tree and arrays, is
examined. The arrays are further divided into
Simple, Double and Quadruple Arrays to look into
the effects of bit slicing on low and high order arrays.
For the final adder, a carry independent adder such
as the Redundant Binary Adder [10] which has a
latency that does not vary with its input bit size is
used. In the following sections, the optimum
conditions for a fast and low power multiplier are
investigated.

3. Design Details of Proposed Multipliers

3.1. Structure of Reduction Unit

Fig.4 shows the structure of the proposed reduction
unit based on Binary Tree for an 8-bit Final Adder.
The input bit size of the reduction unit is fixed by
the size of the final adder unit. The number of input
bits MNmput can be determined from that of the final
adder Noutput by

N =N oupa +2x(log ,n—1) ¢))]

Note that, Mutut stands for the number of output
bits of the reduction unit which is equal to the
number of input bits of the final adder unit, n for
initial input bit size (input bit size before bit slicing),
and ¢ for Booth Order (1 for non Booth, ¢for Booth ¢
where £=2, 3, 4 stands for radix 2, 4, 8, respectively).
Fig.4 shows the case where ¢=1, n= 16, and Noutput
= 8. Substituting the values into (1) yields Ninpue = 14
which stands for the input bit size of each partial
products row into the reduction unit. The extra 6
bits is necessary for the propagation of carries. The
number of arrows before each row of 4-2
compressors represents the remaining number of
partial products rows after each intermediate
reduction. Each row of 4-2 compressors reduces the
number of partial products rows by half and the
input bit size of each partial products row by 2.
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Fig. 4: Proposed Reduction Unit Based on Binary Tree
(¢=1,n=16).
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Fig.5 shows the reduction mechanisms for bit-sliced
partial products using the proposed Binary Tree
method. The partial products are divided into k& (=4)
segments denoted by input#1~4. All segments are
equal in size and overlap one another. The size of
each segment denotes the processing block that is
needed to obtain output#1~4 of 8-bits each. The
output bit size is determined by equation (2). The
overlapping portion, 2(logen-1)-bit in this case, is
necessary to include the carry for each output. The
process occurs from right to left.

N =2xnlk (2
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Fig. 5 Bit-sliced Partial Products Reduction Mechanism
(Using Binary Tree).

The basic structure of the Simple Array is shown in
Fig.6. The input order of the partial product bits are
also shown on the left. Fig.7 shows the case for the
Double Array. The Double Array comprises two
Simple Arrays and a row of 4-2 compressors at the
end to reduce 2 pairs of sums and carries to one
single pair. The filled circles represent partial
product bits in even rows while the unfilled circles
represent those in odd rows. Similarly, the
Quadruple Array comprises 4 Simple Arrays and
two rows of 4-2 compressors to reduce 4 pairs of sum
and carry bits to one single pair.

c1 2 Cc3
ooo 000 poo

Fig. 6: Simple Array.
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Fig. 7: Double Array.

The structure of the proposed Simple Array is
shown in Fig.8. Here, a regular block of full adders
(marked by the dotted box) is attached to the Simple
Array in Fig.6. The number of full adders in each
row within the regular block corresponds to the
output bit size. The Simple Array of Fig.6 serves to
propagate the necessary carries to the 4-bit output.
As such, the size of the proposed Simple Array will
grow by m+1 full adders (where m is number of full
adders in the previous row) with every partial
product row. With Double Array implementation,
the number of rows of full adders needed to form one
proposed Simple Array can be halved. Using
Quadruple Array, this can be halved further. The
only drawback lies in the logarithmic growth of 4-2
compressors at the end of the arrays (as shown in
Fig.9, 10).
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Fig. 8: Proposed Simple Array (4-bit output).



n 2 I3 4 15 C1 Q C3

...000 000 000 000 000 000 000 000
1.]..L Ldou) () b 1.4

ylvd Ydvd VAV Y VAV 4
4.2 4.2 4.2
comp || comp || comp

Fig. 9: Proposed Double Array (4-bit output).
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Fig. 10: Proposed Quadruple Array (4-bit output).

.
L2
R
&
[
i
g
K

Fig.9 and Fig.10 show the structures of the proposed
Double and Quadruple Arrays, respectively. While
the proposed Simple Array can process up to 5
partial product rows, the proposed Double Array
does up to 10 and the proposed Quadruple Array 20.
Note that the regular blocks of full adders attached
to the basic Simple Arrays expand in length along
with the 4-2 compressors (I1~I5 in Fig.9 and I1~17
in Fig.10) This observation leads to equation (3) for
the proposed Simple, Double and Quadruple Arrays.
Unlike for the Binary Tree, MNapur for the arrays
refers to the input bit size of the first partial product
row only.

+pt+c+(n/2r) -2 (&)

input N output

where p=0,1,2 for Simple, Double, Quadruple Array,
respectively; ¢= p-1for p21, ¢=0for p=0; 2= 0 for
non-Booth, 2 = ¢ - 1 for Booth ¢ As an example for
the reduction unit based on arrays, Fig.11 shows the
reduction mechanisms for bit-sliced partial products
using the proposed Double Array method. The

partial products are segmented into 4 equal parts
denoted by input#1~4. The segments overlap one
another. The processing block necessary to obtain
8-bit output#l~4 (using equation (2)) is denoted by
each segment. Note that the 4-2 compressors are
missing from this figure. The carry generation part
observes a staircase-like structure due to the nature
of the Arrays. The initial input bit size for this
structure is (n/2)-2 bits while that of the regular
block is (Nousput + 1) bits. The process occurs from
right to left.
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Fig. 11: Bit-sliced Partial Products Reduction Mechanism
(Using Double Array).

3.2. Structure of Final Adder Unit

Fig.12 shows an 8-bit Redundant Binary Adder. The
characteristic of the Redundant Binary Adder lies in
its latency which is fixed at one EXOR + one AND
gates for any input bit size. This adds up to less
than the latency of one full adder which is two
EXOR gates. A direct consequence of the fixed
latency is that with larger inputs, the Redundant
Binary Adder expands in width but not in logical
depth. The output from the Redundant Binary
Adder is in Redundant Binary format, but can be
easily converted back to normal binary. In the next
part, the Redundant Binary Adder is omitted from
hardware evaluation because its area is considered
insignificant compared to those of the Reduction
units used in this study.

Fig. 12: 8-bit Redundant Binary Adder.



3.3. Estimation of Hardware Cost

For comparison, the hardware costs for the proposed
reduction units are estimated in terms of number of
4-2 compressors or full adders used. Here, Nss, Nmu
stand for number of 4-2 compressors and full adders,
respectively.

The Binary Tree:
(log ; n)-t .
Nogsin = BZ (/2% (Ninput -2x (-1 @
i=1 .
The Simple Array:

Npasim = ((1127) 2 (N,

input

+3—(n/2"'*"))+"’22(j—3) ®)
Jj=4

The Double Array:

Neapou = 2XNpy 30+ 2X N g +1) ®
The Quadruple Array:

Nt guaa = 4X Ny sin +[4X (N +3) +2X (N, +1)] @)

The second term on the right hand side of equations
(8), (7) represents the hardware required by the 4-2
compressors at the end of the Double and Quadruple
Arrays, respectively. In the following section, the
hardware costs as well as the latencies of the
proposed designs are evaluated and discussed.

4. Evaluations and Discussions

In this section, the hardware costs and latencies of
our designs are evaluated in terms of Booth Order
and Slice Degree. Slice Degree refers to the number
of times by which a set of partial products is equally
divided for reduction with a smaller unit. Equation
(8) expresses Slice Degree in terms of &, where k= 29,
21, 22, 23,

Slice Degree=log, k 8

In this study, the design conditions are set as follows.
Initial input bit size = 32-bit; Final output bit size =
64-bit; Non-Booth and Booth 2, 3, 4; Slice degree 0~4,
whereby a Slice degree of 0 refers to no bit slicing at
all. Target designs are the Binary Tree, Simple
Array, Double Array and Quadruple Array.
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Fig.13: Hardware cost vs. Slice Degree (Binary Tree).

Number of Full Adders

Slice Degree

Fig.14: Hardware cost vs. Slice Degree (Quadruple Array).

The graphs of Hardware cost against Slice Degree
for different Booth Orders are shown in Fig.13, 14
for Binary Tree and Quadruple Array, respectively.
It can be observed that hardware savings improve
with higher Slice Degrees. This improvement is
more significant at non-Booth and lower Booth
Orders. For Binary Tree and high-order arrays,
hardware reduction by up to 50% is attainable with
Slice Degree 2 compared to no bit slicing. With Slice
Degree 4, hardware savings reach up to 75%.
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Fig.15: Hardware cost vs. Slice Degree (Non-Booth).
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Fig.16: Hardware cost vs. Slice Degree (Booth 3).

Fig.15, 16 compare the hardware cost of Binary Tree
to arrays at non-Booth and Booth 3 respectively.
From the results, we see that high-order arrays
require lesser hardware than Binary Tree at
non-Booth, and this phenomenon is also observed
with low-order Arrays at Booth 3. At Booth 3,
hardware .cost by Quadruple Array exceeds other
schemes for all Slice Degrees. This is because the
proportion of hardware dominated by the 4-2
compressors becomes critical. The number of these
4-2 compressors increases logarithmically with
higher order arrays as can be observed in equations
(8), (7). Notwithstanding, it can be deduced that a
larger multiplication will sustain the trend as
shown in Fig.15.
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Fig.17: Latency vs. Booth Order (independent of Slice Degree).

Fig.17 shows the graph of Latency against Booth
Order for all schemes. It is observed that the latency
of each array type matches with that of the Binary
Tree at a certain Booth Order. At Booth 2, the
latency of Binary Tree matches with that of
Quadruple Array; at Booth 3, with Double Array;
and at Booth 4, with Simple Array. Based on this, it
can be said that as Booth Order increases, the
performance of higher order arrays drops relative to
that of the Binary Tree. This is due to the latency
incurred by the above-mentioned 4-2 compressors. A
consequence of this tradeoff between the latency of
the arrays (which decreases with higher order) and
the latency of the 4-2 compressors (which increases
with higher order) is that the reduction speed of
arrays will never exceed that of the Binary Tree for
any Slice Degree. Nevertheless, where the latency of
both array and Binary Tree matches, hardware
savings by the arrays are always better than those
of the Binary Tree. This is shown in Tablel. For the
same latency, hardware savings are largest at 18.2%
with Booth 3 for the Double Array and Binary Tree
pair (using equations (9), (10)). Hardware savings
are in- dependent of Slice Degree except at Slice
Degree 0. Based on the findings, it can be concluded
from this study that the arrays with bit slicing
technique applied are more suitable to realize a
compact and fast multiplier than with the Binary
Tree. However, it should be added that a further
study into the hardware requirements for the Booth
method is necessary to determine the optimum
Booth Order and Slice Degree.

Table.1: Hardware Savings at Same Latency -
Arrays vs. Binary Tree (independent of Slice Degree except 0).

Latency | Hardware Savings

(#FA) (%)
Non-Booth
Octuple / Binary 8 12.0
Booth 2
Quadruple / Binary 6 14.5
Booth 3
Double / Binary 4 18.2
Booth 4
Single / Binary 2 8.3

#FA, —#FA
Hardware Savings = — 22 " "Zarw 1000, (9)
#FA g,
Ny =2XN, (10

5. Conclusions

A comparison of regular reduction schemes, namely
the Binary Tree, Simple, Double, and Quadruple
Arrays is done by examining the effects of bit slicing
and Booth Order on hardware cost and latency. It is
found that hardware cost can be reduced by up to
75% with intensive bit slicing, and the Arrays show
more potential in realizing a fast and compact
arithmetic unit than the Binary Tree. Future works
include SPICE simulations for advanced CMOS
technologies.
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