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Abstract In this paper, we propose a systematic design method for quantum circuits that compute Boolean
functions. Our synthesis strategy is based on the idea proposed in[1}, but it is much simpler, and also may be
more practical since we only use three different types of gates wherens the work in [1] may use many types of gates
including rotation gates with exponential (with respect to the number of inputs of the desired function) accuracy.
To formulate our synthesis strategy, we introduce and formulate a new concept, matriz function, which can de-
scribe a quantum circuit’s behaviors very well. Then, in order to represent matrix functions efficiently, we naturally
introduce decision diagram structures, which we call (DDMF) Decision Diagram for a Matriz Function. These
formulation may be interesting on their own.

Key words quantum circuit design, binary decision diagrans, controlled-V gates

where the laws of the quanturn world will dominate.
1. Introduction .
To perform quantumn computation, it is indispensable to

Recently quanturn computing has attracted great atten-
tion by many researchers in both scientific and technological
fields. Although the impleinentation of quantum computers
is still a big challenge and seems to be very difficult, there are
good reasons for pursuing the challenge of quantum comput-
ing. Oune of them is that quantum comnputing has significant
potentiul over the current (or often referred as classical be-
cause the techuology is based on classical physics in contrast
to quantutn physics) computing. There have been many su-
perior quantum algorithms [2), [3), [4], and we know that the
current technologies will soon reach to the microscopic level
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construct a circuit to compute a desired Boolean function as
for classical computing. However, the circuit design seems
to be very difficult for quantum circuits. Indeed there have
been no good systematic ways proposed for constructing a
quantum circuit for practical size (say, more than 30 vari-
ables) Boulean functions.

Recently, Abdollshi and Pedram suggested in (1) that a
binary decision diagram structure (what they call o quan-
tum decision diagram) can be used for the systematic syn-
thesis of quantum circuits. Their work may be considered as
early stage research since they do not give a clear formulation



of their approach with respect to the differences from con-
ventional Boolean functions. Also their synthesis algorithm

ueeds rotation gates \vilglg ezponentiol (wit.h rospect to the

number of inputs of the desired function) accurm:f, which is

very likely not practical. ‘o
In this paper, we generalize their ideu to givo clearer defi-

pitions uud coucepts of decision dlagram structures for (quan-

tum cm.ult deslgu. in their'work, quantum decision diagrams:

are used to represent Boolean function like binary ‘decision
diagram, and thus there is a confusion bevween Boolean func-
tions and quantum specific fum:gious using such a data struc-
ture. Here, we introduce a iigorous definition of a quantum
Junction nqd a new concept, matriz ﬁmcﬁun, which cun for-
malize che conceps of desiguing quantum circuits quite well.
We then introduce a decision diagram to represent mautrix
functiou called @ (DDMF) Decision Diagran for a Malriz
Function. This data structure is appears sitnilar to Abdollahi
and Pedram’s quantum decision diagrams, however, as men-
tioned above, the coucept is very different between DDMFs
and quantum decision diagrams in [1]. o

Our contributions may be seen as improvements to the
work in [1], and can be listed a% follows: a

® e generalized quantum decision diagrams in{l] to a
decisiou diagram structure for general nnitary matrices.,

® e generalized the target from Boolean functions to
quantum functions whose notion is also introduced in this
paper. - B

o To express the functionality of quantum functions, we
introdute matriz functions, and appropriate operators be-
tween them. ) .

®  Qur decompositiou algorithin is simpler, and is cow-
plete. (The algorithin presented in (1] is not complete,)

® QOur method uses only three types of rotation gutes,
which should be more practical. (Their presented algo-
rithn is not practical since they may use rotation gates with
exponential (with respect to the number inputs of the de-
sired function) accuracy.

2. Quantum F\mctlons and Matrix Func-
tions ‘ , :

In this sectioyn, we ill(y.r()(!ﬁ(:;! t!}q .(‘l'eﬁ‘nitio;ns‘pf a quantum
Junction and a matriz function. These concepus are useful for
designing quantum circuits with quantum specific gaié'. (i.c.,
gates whose functionality cannot be specified by Boolean
functions). Such a concept may. be uu.d unphutlv in the
literature, but this paper | is the hrst w dlb(.llbb ngoruus dcl'-
initions to the best of our kuowll.dge Nov.e t.luu. the term

“quantum f\mct.lon has been used m the literature in dif-
ferent contexts, wnt]wut. clear dc,ﬂmtmn Note also that pur
definition may be essentially different fmm most of the pre—

P . . A {0 1
gite whose matrix representation is NOT = ( )

s follows: R(0) = (

~and NOT work in the same way as —iR(x)

vious usages, but our definition is very reasonable for our
purpose.

; 2:1 ,Quantum $tatep and Quantum Gates

Bt.fore introducing our dehu‘itluus, leL us’ bneﬂy explain
the basics of quantum computation.

In quantum computation, it is assumed that we cau use
u qubil which is an abstract model of a quanium siale. A
qubit can be destribed ny e |0) + 8 [1), where |0) and [1) are
two basic states, and o and 8 are complex numbers such
that Jof + (B = 1. It is, couvenient 1o use, the following

vectors to denote |0) and 1), respectively: {0) = (ll)) and,

1) = ((l,) . Thus, « |0) + 3 1) can be described as a vector:

a|0)+ﬂ|l)=(ﬁ). o . )

Accordingly, any quantum operation on a qubit can be de-

seribed as a 2x2 matrix. By the laws of quunl;mn uwchanl(s,
" the malrix must be unitary. We call-one quintum opuauon

i quantuin gaic, For Lxmnplo the operation which trans-
forms [0) and ]1) to |1) and |0), respectively, is called a NOT'

1 0o

Rotation gales are ofien used in gquantumn computation.
Their matrix representation is parameterized by an angle ¢
cos(0/2)  isin(6/2)
sin(8/2)  cos(8/2)
iuteresting feature: (6, )R(62) = R(61-+ 82) which ecans
that che application of R(6)) after applying R(6:2) is equal
to,the application of R(6: + 82). We can cousider that R(w)
= NOT since the

). .'I'I;L% has an

. globul phase shift —i does not. affect the result of quantum

computation.
In this paper, we also consider a special gate called & V
1 ) o

gate: V = ¢ .

. This gate has the interesting

property that V¢ = NOT. This property will be:utilized in
onr synthesis algorithm.

To compute o function, we need gates which upemu on
more l,hu.u one qubit. A wnlmllad-U jﬂlL is a gate that
upuaws on two (ibits in such a way tlmt it apphus U o
the second qubit (called the target bzl) \\hen the first qubit
(Lalled the conlrol bat) is in the blul.tl, |l) “In this paper we
consider g.u.es wnth mult.u»le wntrol bu,s as well as mgalwu
umlmls us (-xpliuucd in the follm\mg anmplc (Hm\cver,
nate tha(. such gates can ul\\a)-; h(, dewmpusud into gaws
wlth one wm.rul bit [a]) Consul('r the example in F‘lg 1. lu
tlu& 'u'um lhvr(' are t.wo gm.es, tlle lLft ul v.lu(,ll is w.lled a

To[foh gnlr: The targt-t, bit is w and the S\ mbol © means
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Fig. 1 A Quantum Circuit (1)

Iig. 2 A Quantum Circuit (2)

the NOT operation. The control bits are <; and z; denoted
by black circles. This gate performs NOT on w only when
both z; and z; are in the state |1). Consider the gate on
the right side in the same figure. The white circles denote
negative controls, which means the gate performs NOT only
when both of the states of ) and z, are in the state |0).

We can consider any unitary operation for a controlled
gate. For example, the gate's functionalities of the left and
the right gates in Fig. 2 are R(7) and R({), respectively.

2.2 Quantum Functions and Matrix Functions

Consider Fig. 1. This circuit transform. the state of the
third bit |w) into jw® f(z1,x2)), where f(z1,22) = 1 -
xy + T1 - Zz. Thus, this circuit realizes the Boolean function
J(21,22) = ) - T2 + T1 - 77, and indeed this type of circuit
can be used as an oracle for the famous quantumn algorithm
called Grover Search [4). .

Cousider Fig. 2. In this circuit, we cannot write the re-
sultant state of the third bit as |w G f(z1,za)) such vhat
f(z1,z2) is a Boolean function.

Although our goal is to construct a quantum circuit to cal-
culate a Boolean function (e.g., the circuit shown in Fig. 1),
we would like to consider quantumn cireuits which can use ro-
tation gates such as the circuit in Fig. 2. The reason is that
such cireuits are very nseful as a part of the desired circuit
as we will see in our design strategy. Since the functionality
of such circuits is not Boolean, we need to define how to rep-
resent the functionality of such circuits. Before iutroducing
our representation, we need the following definition.
(Definition 11 A quanturn function with respect to n
Boolean variables x1,z2,-- ,za is a mapping from {0,1}"
to a qubit state.

See the third bic in the circuit in Fig. 2 again. If the initial
state of |w) is |0), the resultant stute of the third bit can
be seen as a quantum function. This quantum function is
described as g fa(x1, £2) in Table 1. For example, the resul-
tant quantum state becomes R(5) [0) when z, = 0,32 = 0.
Thus, ¢f2(0,0) is defined as R(;7)|0) as shown in the table.

Note that a Boolean function can be seen as a special case

Table 1 A truth table for'a quantuin function

Ty,Tp qf2
0,0 | R(4m)|0)
0,1 {0)
1,0 10y
L1 | R()w)10)

Table 2 A truth table for a classical furction
z1,T2 | ¢h
0,0 |1
0,1 | 0)
1,0 | jo)
L1 |y

‘Iable 3 A truth table for a matrix function

T1,T2 | mfa ‘
0,0 | R(§m)
0,1 1
1,0 !
1,1 | R(§n)

Table d A truth table for constant matrix functions

T1,%2 | CM(1) | CM(R(§T))
0,0 i R
0,1 1] R(57)
1,0 i R(ix)
1,1 1 n(i7)

of quantu functions. For exawmple, Tuble 2 shows the quan-
tumn function of the resultant third qubit in the circuit in
Fig. 1 when the initial state of |w} is |0). This can be con-
sidered as the output of a Boolean function when |0) and |1)
ure considered as Boolean values D and 1, respectively. - -

+Tn)
can always be expressed as mf(z, 2, - ,za)|0), where

The value of a «quantum function q(zi,T2,---

mf(z1,22,--- , &) is 8 mapping from {0,1}" to 2x2 unitary
matrices. It is convenient to consider mf(x1, 2, - ,zn) in-
stead of q(zy, x2, -
ing definition.

, &) itself, thus we introduce the follow-

[Definition 20 A matrix function f with respect to n
Boolean variables 23,22, ,Tn. is & mapping from {0,1}"
to 2x2 matrices.

Table 3 shows the matrix function mf(z1, z4) for the quan-
tum function qf2 in Table 1.

We define a special type of matrix function called constant
malriz function as follows. .
[Definition 3] A matrix function mf(zi,zz,-++ ,zs) is
called a constant matrix function if mf(z1,z2,--- ,z,) are
the sawe for all the assignments to 1,232, -- ,zn. CM(M)
denotes a coustant matrix function that always equals to the
matrix M. .

Table 4 shows the truth tables for constant natrix func-

tions, CM(I) and CM(R(im)).
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‘luble 5 An example of an operator ©.

IAETEEY mfy O mfy
0,0 | R(3=) | f(3x) R(x)
0,1 I ! [

1,0 1 | riin | win)
L1 | R iy | n(3w)

‘I'eble 6 An example of an operator =.

sz | mfy | N[ fiemfy
0,0 [r(dm 11 wiin)
0,1 1 o 1
Lo | &(x) |1 I(m)

(L1 [ nm) jo 1

By using the matrix function m f, in Table 3, we can easily
see how the circuit in Fig. 2 transforins the third qubit |w):
|w) is transformed to mfa(zy,z2) jw). For example, when
o1 = 0,32 = 0, |w) is transformed to R(7) |w).

For matrix functions, an operator “O" is defined as follows.
[Definition 4] Let mfi(zy, T2, --
be matrix functions with respect Lo z; to z,.
mfi(z1,22,* ,Zn) O mfa(zr, T2, -
tion mf(z1,Z2,+ ,Ta) such that mf(z), 2, ,2,) =
wmfi(T1, 2, Zn) mfa(z1, T2,

mal matrix multiplication.

Then
,Tn) is a matrix func-

,Zn) where - weans nor-

Cousider the example in Table 5. Note that if mf, and mf,
are considered to be Booleun functions like qf, in Table 2,
this operator corresponds to the EXOR of the two Boolean
fuuctions.
We iutroduce another operator “¢" us follows:

[Definition 5] Let mf(z1,z2,- - ,Zn) aud f(z1, 22, ,Zn)
be a matrix function and a Boolean function with re-
spect to Ty to zn, respectively. Then f(zy,z2,--+ ,zu) *
mf(zi,@2,+++ ,Tx) 18 & matrix function which equals to
mf(z1,%2,- -+ ,Ta) when f(zy,z2,-
to I when f(z1,£2, « ,zn) =0.
Cousider the exawmple in Table 6. Note that if mf is con-
sidered to be a Boolean function like ¢f) in Table 2, this

operator corresponds to the AND of the two Boolean func-

,Zn) = 1, and equals

tions.

2.8 Decision Diagrams for Matrix Functions

A matrix fuuction mf for a quantum funciion ¢f can
be expressed efficiently by using a binary decision diagram
structure as in the case of Boolean functions[6]. For this
purpose, we introduce a (DDMF) Decision Diagram for a
Mairiz Function as follows:
[Definition 6] A Decision Diagram for a Matrix Function
(DDMF) is a directed acyclic graph with three types of
nodes:

® 4 single terminal node corresponding to the identity
matrix 1,

yZa) and mfaz, 2, ,Tn)

Mo
N

Iig. 3 Ao internal node in a DDMI®

® aroot node with an incoming edge having a weighted
matrix M, and

® aset of non-terminal (internal) nodes.

Each interual and the root node are associated with a
Boolean variable z;, and have two outgoing edges which are
called 1-edge (solid line) leading to another node (the 1-child
nede) and V-edge (dashed line) leading to another node (the
O-child node). Every edge has an associated matrix.

The matrix function represenuted by a node is defined re-
cursively as follows:

® The watrix function represented by the terminal node
is the constant matrix CM (7).

® The matrix function represeuted by an internal node
(or the root node) whose associated variable is r; is defined
as follows: = » (CM (M) O mfi) © T7 « (CM(Mo) O mfo),
where mf; and wmfy are the matrix functions represented
by the 1-child node and the U-child node, respectively, and
M, and Afy arc the matrices of the 1-edge and the 0-edge,
respectively. (See an illustrasion of this structure in Fig. 3.)

¢ The root node hus one incoming edge that has o ma-
trix Af. Then the matrix fnction represented by the whole
DDMF is CM(M) ® mf, where mf is a matrix function
represented by the rout node.

Like conventional BDDs, we achieve a canonical form for
DDMF if we impose the following restriction on the matrices
on every edge.

[Definition 71 A (DDMF') is canonical when

* all the matrices on 0-edges are /,

® there are no redundant nodes: i.e. no node has (-edge
and 1-edge pointing to the same node with 7 as the l-edge
matrix,

e common sub-graphs are shared: there are no two sub-
graphs that have the sume structure.

Any DDMF can be converted to canouical form by using
the following transformation from the terminal node to the
root node.

Suppose the matrices on incoming edge, 0-edge and 1-edge
of a node be M, My and M, respectively. Then, if My is
not £, we modified these three matrixes as follows:

e The matrix on the incoming edge changed to be M AMy.



I'ig. 4 Converslon to the canonical formn

¢ The matrix on the 1-edge changed to be MMy .

® The matrix on the 0-edge chauged to be I.

It is easily verified that this transfortnation does not change
the matrix function represented by the DDMF. See the ex-
ample in Fig. 4 where the matrix on 0-edge of the node z, is
converted to I. In the example, the matrices / on edges are
omitted.

Note: The decision diagram structure is similar between
DDMF's and the quantun decision diagrams discussed in [1).
However, quantum decision diagrams are used to represent
couventional Boolean functions whereas DDMFs are used for
representing wmatrix functions; the terminal node of a DDMF
is a matrix J. Also a weight on an edge in DDMFs is gener-
alized to any matrix. Thus, DDMFs can be considered as a
geueralization of quantum decision diagrams to treat matrix
functions rather than Boolean functions. (As we have seen
in Table 2, Boolean functions can be seen as a special case
of quantum functions.)

We will use the same operators for DDFMs as for matrix
functions. More concretely, for matrix functions mf, mf;
and m fz, we will say

e (DDMF for mf) = (DDMF for mfi) ® (DDMF for
mfa) f mf =mfi ©mfa, and

* (DDMF for mf) = (DDMF for mfi) « (DDMF for
mfa) it mf =mf »mfa.

3. Quantum Circuit Design from Matrix
Functions

As in conventional logic design, if we have already con-
structed quantum circuits for mf, and mfz, then we can
construct quantum circuits for mfi O mfz; and mf, « mfa.
Thus, we can construct a quantuin circuit for a given ma-
trix function m§ if we can decompose it to mf, @ mfz or
mfi=mfz where mf, and mfz are easier to implement than
mf; we may consider the quantun circuit design in a similar
way as conventional logic synthesis.

We will now show the two types of quantum matrix de-
compeosition.

8.1 Decomposition of Type 1

When we want to make a circuit for 8 matrix function

QG modified 0C, ocy!
by
bep)
1)) v & ] & g
) Bl

Iig. 5 A Quantum Circuit for mfy * mfz

that can be decomposed to mf) @ mfz, we simply concate-
nate two circuits for mf, and mfz. This is easily verified
by the property of the operator ©. Formally, we have the
following observation.

[Proposition 1] Let quantum circuits QC, and QC; be the
circuits corresponds to the trausformations by matrix func-
tions mf, and mf2, respectively. Then the circuit obtained
by concatenating QC) and QC: corresponds to the transfor-
mation by a matrix function mf; @ mf,.

Intuitively, the transformation by the circuit corresponding
to mfy @ mf; is just a combination of the traunsformations
for mfy and mf,.

3.2 Decomposition of Type 2

If we have already designed two quantun circuits QC) and
QC; corresponding to the transformations by matrix func-
tions m f1 and mfa, respectively, we can obtain the quantum
circuit corresponding to the transformation by a matrix func-
tion mfi = mf; in the following way.

Step. 1 Construct QC;. Let the qubit where QC) calcu-
lates the quantuimn function be wn.

Step. 2 Construct a circuit identical to QC2 except that wy
is ndded to the control bit of every gate in the circuit. Add
this circuit after the circuit obtained at Step. 1.

Step. 3 Construct an inverse circuit of QC). Add this cir-
cuit after the circuit obtained at Step. 2.

This approach is iltustrated by the example in Fig. 5 where
QC) (which corresponds to mfi) and QC; (which corre-
sponds to mfz) correspond to the circuits in Figs. 1 and
2, respectively.

4. Quantum Circuit Design using DDMF's

In this section, we show some techniques for designing a
quantum circuit from a given DDMF. Based on the pre-
sented techniques, we can construct a Boolean function
with only controlled- NOT, controlled-V and controlled-V !
gutes. Thus, our method can be considered to be more prac-
tical than the method [1] which needs many types of rotation
gates with exponential (with respect to the number inputs
of the desired function) accuracy in the worst case.

4.1 Easy Case 1

If we want to construct a circuit corresponding to a DDMF
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for f where (DDMF. for f) = (DDMF for g) ® (DDMF for
h), then we simply concatenate two circuits for mnf; and mnf;
to get the desired circuit. This is exactly the same as the De-
composition Type 1 in the previous section.

See the example in Fig. 6 where we want to construct a
circuit for a Boolean function f = g ® A. In this example,
(DDMF for f) = (DDMF for g) © (DDMF for k). The de-
sired circuit is just a concatenation of the circuits for g and
h.

4.2 Easy Case 2
[Definition 8] A (DDMF) is called a chain if, for all the
nodes in the DDMF, the 1-edge and (-edge go to the same
node. . o ‘
If the targeted DDMF is a chain siructure, we can con-
seruct the circuit as follows:

®  For each non-terminal node where the associated vari-
nble is z; and the matrix on l-edge is M, we create a
controlled-M; gate controlled by z;.

¢ We concatenate all the above gates to get the lleslrcd
circuit.

For example, the DDMF for h.in Fig. 6 is a chain struc-

ture, and thus it has a simple implementation as shown in

the figure.

Note that this technique is based on a very bumlar idea
found in (1]. .

4.3 Complex Case

If there is no chain structure in the buu.om part of a
given DDMF, we cannot use the decomposition techniques
described above. Even in such a case, by using the follmﬁng
method, we can decompose any DDMF into simpler DDMFs,

Assume that we want to implewent 4 Boolean function g
whose corresponding DDMF dogs not have a chain structure
in-the bottom part. Let the bottom non-termingl node be
v;, aud the associated variable to it be z;. Then, we can
construct the circuit as follows: . ..

® Let a Boolean function b be a function that corre-

sponds to all paths from the root node to o; in the DDMF
for . - .
e Let a Boolean function {be hO z;. |, . vy

®  Let m be a DDMF that is. obtained from the PDMF

2N

Fig. 7 Decomposition of DDMI's: Cumplc;t‘.(:ase

for { with replacing all NOT on edges to V.

¢ We can construct vhe desired circuit as shown in Fig. 7.
An example of this approa(.h is showu in Fig. 7.

Although the detail is omxtted ‘it can be easn]y shown (as
illustrated in Fig. 7) that the DDMFs for { and m have chain
structures in their Eéttoxxl part, and they are easier to -
plement than g. Again due to the space, we omit the detail,
but we can construct s quantum circuit fora given Boolean
fum}tiou by recursively apply the above three cases.

5. Conclusion.

In this puper, we introduced a new concept “matrix func-
tions” which are very useful to describe how logic synthesis is
performed for quantum circuits. We also introduced DDMFs

and their rigurous definitions. We showed that there is a

systeluaw. way to decompose a DD\iF to construct the cor-
responding qu.mtluu circuit.

We are now dwcluplug a synthesis prugrum based on the
strategies presented in this paper. Our obvious future work
is to evaluate the efficiency of the proposed method by ap-
plying the wethiod to benchwmark circuits (7). " Also, we will
iuvestigate alternative synthesis methods based on DDMFs.
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