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Abstract [P-reuse can enhance the design productivity only if the design methodology treats the IPs in a proper way.
Especially in the floor-planning phase, sensitive IPs should be treated as routing obstacles, which is impossible when the
conventional HPWL-based method is used for routing estimation. This paper proposes an obstacle-aware minimum wiring
length (MWL) estimation algorithm, based on the theoretical result in [S], through algorithmic improvements and practical
approximation. The experimental results suggests that MWL-based estimation is now possible with only few times larger
computational cost comparing to the HPWL-based estimation.

Key words visibility graph, lookup-table, directed-acyclic graph, shortest path

obstacle-aware routings(see Fig.1). Recently in[5], based on the

1. Introduction . . .
computational geometry research by Mitchell [6], it is shown that

In modern LSI design methodologies, the gap between produc-
tivity and designability became a hard problem, and IP-reuse is
expected to be the key to solve this crisis. To let IP-reuse being
successful, the design methodology should pay detailed care on
the reusing IPs. Especially in the first and most important floor-
planning phase, it is often the case that the sensitive IPs should be
treated as routing obstacles. The conventional half-perimeter-wire-
length (HPWL)-based estimation, is far insufficient to handle such
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obstacle avoiding minimum wire length (MWL) of two-pin nets can
be estimated in O(n) time per one net, as well as in O(1) time per
one net with O(n?) time preprocess for all nets, where  is the num-
ber of obstacles. However, they give no experimental result, and the
computational cost of their methods might be too heavy for practical
use.

In this paper, we first improve their preprocess algorithm to cut
out repeated calculation observed in our experiments on certain



edges in constructing the look-up table, but unfortunately experi-
ments show that even our improved version of the algorithm might
be still too slow. A breakthrough is obtained by the observation that
routing detours around obstacles tend to occur near the terminals.
Using this observation, we finally propose approf(imation algorithm
with no preprocess, that considers routing detours only around ter-
minals. The experimental results show that the calculation time of
the proposed algorithm is only few times longer than HPWL-based
method, while the degradation on the accuracy is tolerable.

The rest of this paper is organized as follows: section 2. describes
the problem we deal with. section 3. presents our estimation meth-
ods. section 4. gives the experimental results. Finally, section 5.
concludes the paper.

2. Problem Setup

We define the wire length estimation with obstructive blocks
problem as follows:
Input :
(1) The placement. (Including the locations of blocks and pins, and the
information of nets.)
(2) The ABLR relations [1] of the blocks.
Constraints :
(1) The blocks are non-overlapping rectangles.
(2) The pins are located at the peripheries of the blocks.
(3) The routing adopts the Manhattan geometry.
(4) Al the blocks are obstacles for routing.
Output :
The length of the shortest routing of a 2-pin net that avoids all the blocks.

The ABLR relation is universal for relation-based representa-
tions, e.g., Sequence-Pair[2]. It indicates whether a block A is
located above, below, left-to, or right-to another block B. If A is
above B, then A’s lower boundary is above B’s upper boundary. If
other representations, e.g., B*-tree [3], are used, we can translate the
placement into a sequence-pair in O (M log M) time [4] and then ob-
tain the ABLR relation. The fourth constraint is for the simplicity of
discussion. It will be shown later that the proposed method can be
easily extended to handle the problem in which only selected blocks
are obstacles.

In this paper, we use (s,?) to denote a 2-pin net with s as the
source pin and ¢ as the sink pin. Without loss of generality, we as-
sume the net satisfies:

[Assumption 1] sis onblock S andzisonblock T,S # T. S is
left-to T. y; < y; (s is located lower than ¢).

Fig.1 gives an example of such a net. This paper discusses only
the situation that satisfies Assumption 1. Other situations such as
S is above T or y; > y, can be discussed by vertically/horizontally
flipping the placement or rotating the placement by 90°.
[Definition 1] The length of the shortest routing that avoids all
the blocks is called the minimum wire length (MWL) of the net. A
routing with this length is called an MWL routing.

Figure 1 The HPWL may underestimate the Minimal Wire Length (MWL)
of an actual routing.

3. Algorithms

In 3.1 and 3.2, we briefly review the algorithms in [5]. In 3.3, we
propose the Speedup Algorithm of LUT. Finally, an approximation
method that only considers the detours around terminals is proposed
in3.4.

3.1 Visibility Graph (VG) Algorithm

How to obtain the MWL routing by finding the shortest pathon a
DAG is introduce in [5]. The key is to construct the DAG. They also
defined the VG (VG can be classified to Horizontal Visibility Graph
(HVG) and Vertical Visibility Graph (VVG)). It is necessary to con-

. struct both of them when calculate the MWL. But we only discuss

the HVG for conciseness. VVG can be easily constructed by con-
necting edges vertically. HVG can be built according to [5], HVG is
a directed-acyclic graph (DAG) from left to right (see Fig.2).

Figure 2 The HVG of a placement.

The MWL of any two vertices on the VG can be obtained by us-
ing Shortest Path Algorithm according to [S]. It has been proved that
if there exists a shortest path on VG, the MWL is the length of the
path. If there is not any existing path, the MWL is equal to HPWL.
Now, we can summarize the VG Algorithm (see Algorithm.3. 1).

The total time complexity of Algorithm.3.1 is O(Mlog M+
NM) according to [S], if using a Plane Sweep Method to construct
VG. This is much better than the O(NMI) complexity if we apply
Dijkstra's Algorithm on the Channel Intersection Graph.

(¥1) : means ABLR-relation (Above-Bel lation or Left-Right relation), which
mainly base on the relationship of the blocks that s and ¢ are on.

(#2) : the edges go from pin s, and the edges go to pin 1
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Algorithm.3.1 Visibility Graph (VG)

1 : Construct the VG Gp of the placement P
2:TotalWL =0

3: fon; each 2-pin net (s, 7) do

4: Judge the relationship®™®" between s and 1.
5: Add pin edges™?,

6: Ifsandtis Left-Right (LF) Relation then
7

8

9

Search the shortest path from s to f on HVG.

if there exists no path then
: MWL = HPWL
10: end if
11:  else

12: Search the shortest path from s to ¢ on VVG.
13: if there exists no path then

14: MWL = HPWL
15: end if
16: endif

17:  TotalWL = TotalWL + MWL
18:  Remove pin edges.
19: end for

3.2 Lookup Table (LUT) Algorithm

We can record note-to-node distances in a LUT and use it during
estimation phase. When estimating a net (s, ¢) (see Fig.3), we just
select the shortest path among the four choices (s — a; — b; — 1),
(s>a —oby—>t), (s>ay—b -0, and (s—a, > b, > 0.
Since all the distances and the edges are pre-calculated, this takes
only a constant time.

Figure 3 The four paths in LUT Algorithm.

Algorithm.3.2 Lookup Table (LUT)
: Construct the LUT Gp of the placement P
:TotalWL =0

1
2
3 : for each 2-pin net (s, 1) do

4: Add pin edges.

5: Select the shortest path among the four choices
6: TotalWL = TotalWL+ MWL

7: Remove pin edges.

8 : end for

We present LUT based MWL estimation algorithm (see Al-
gorithm.3.2). The total time complexity of Algorithm.3.2 is
0 (N + M2) according to [5].

3.3 Speedup Algorithm of LUT

Before we discuss the Speedup Algorithm of LUT, let us review
LUT Algorithm. As an example of how to construct the LUT, we
sort the nodes from left to right, and we have already constructed
the HVG(as shown in Fig.4 (a)). Then we calculate the MWL from
nodes to nodes by Shortest Path Algorithm on DAG, using the order
we sorted. First, the MWLs from Nodel are calculated (as shown in
Fig.4 (b)), notice that the MWL between Nodel and Node3 can be
calculated by HPWL because there is no horizontal edge. When we
calculate the MWLs from Node5, 6,7 (as shown in Fig.4(c)), they
have already been calculated once. Furthermore, when we calculate
the MWLs from Node9, 10,11, 12,17, 18 (as shown in Fig.4 (d)),
they are calculated three times. To repeat calculating the MWLs
from 1 node is a waste of time, obviously.

) Sl
S ke

(d) To calculate the MWLs from
Node8, 10, 11, 12, 17, 18.

(c) To calculate the MWLS from Node5, 6, 7.

Figure 4 An example of how to construct the LUT.

i
' (a) NodeS Is searched. (b) Node10 Is searched.

Figure 5 An example of applying the Speedup Algorithm of LUT.

In the Speedup Algorithm of LUT, we still search the short-
est path from left to right, an example is shown in Fig.5. First,
give all MWLs an infinite value. But this time, we do not check
whether there is any edge from the current node. Instead, we check
whether there is any edge to the current node. If there is an edge
to the current node, update the MWL to this node. As shown in
Fig.5 (a), when NodeS is searched, there are 3 edges to NodeS.
Therefore, the MWLs of (Nodel, Node5), (Node3, NodeS), and
(Node4, Node5) are updated by HPWL of them, respectively. When
Nodel0 is searched (see Fig.5 (b)), the MWLs of (Node5, Node10)
and (Node6, Node10) are updated since there exists edges. If we




want to calculate the MWL of (Nodel, Nodel0), since the MWLs
of (Nodel,Node5) and (Nodel, Node6) are already known, we
can compare the value (Nodel, Node5) + (Node5, Node10) and the
value (Nodel, Node6) + (Node6, Node10), then choose the shorter
one for the MWL of (Nodel, Nodel0). Néw, we summarize the
Speedup Algorithm of LUT on the stage of calculating MWL be-
tween nodes (see Algorithm.3. 3).

Algorithm.3.3 Speedup Algorithm of LUT
1: for each MWL do
2: MWL=o

3: end for
4 : for each node ¢ sorted do
5: for each t's parent node®? p do
6: MWL(p,t) = HPWL(p,1)
7: end for
8 for each s in front of ¢ (in the sorted order) do
9: for each 1’s parent node p do
10: if (MWL(s, p) # 0) &&
(MWL(s, 1) > MWL(s, p) + MWL(p, 1))
then MWL(s,7) = MWL(s, p) + MWL(p, 1)

11: end if
12: end for
13:  end for

14: end for

15: for each MWL(s, p) # o do
16: MWL =HPWL
17: end for

As you see, we do not need to repeat calculating the MWLs from
one node if we use the Algorithm.3. 3. Although there is no change
of time complexity, but we can still expect Speedup Algorithm of
LUT runs faster than LUT.

3.4 No Preprocess (NP) Algorithm

All the algorithms up to now target at exact obstacle avoiding wire
length. However, in our experiments, we observe that they are usu-
ally very slow compared to HPWL in practice. If we aim at speed,
we have to abandon the lookup table which is a preprocess every
time we want to calculate the MWLs of a placement.

When a placement is optimized or nearly optimized, modules that
are connected tend to be pulled together, leaving less possibilities
for detouring. When two modules are very close, their node-to-node
distance in the look-up table is the HPWL (see Fig.6(a), distances
between node a; and b; are just HPWL). Therefore, we propose
the fast non-preprocess algorithm which loses exactness only in a
very minor degree. In NP Algorithm, we take HPWL for (a, — b)),
(a1 = by), (a3 — by), and (a; — b,) to calculate s — to — ¢ length.
Then take the shortest one for estimation. Notice that in Fig.6, since
block S and block T is left-right relation, detours occur around
the horizontally adjacent blocks of terminals. When the relation

(33) : means the node connecting to node ¢ directly.
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(a) 2 intermediate nodes.

(b) 1 intermediate node.

Figure 6 If all the paths from s to ¢ have less than 2 intermediate blocks,
then NP estimation is exact while HPWL estimation may still
contain huge error.

of S and T is above-below relation, the a;,a,, b, b, stand for the
nodes of vertically adjacent blocks. The algorithm is shown in Al-
gorithm.3. 4.

Algorithm.3.4 No preprocess (NP)

1: TotalWL =0 '

2 : for each 2-pin net (s, 1) do

3: Add pin edges.

4: Calculate the HPWL of (a; — b)), (a1 = b2),
(az — by) and (a2 — by).

5:  Select the shortest path among the four choices
6: TotalWL = TotalWL + MWL

7: Remove pin edges.
8 : end for

It is obvious that when every path from s to ¢ has 2 or less inter-
mediate blocks, our NP estimation is guaranteed to be exact. There-
fore, the NP estimation is always exact when the two blocks S and
T are adjacent and is exact with high possibility when they are very
close. On the other hand, directly using HPWL to estimate the wire
length may still suffer from huge error even when the blocks are
close. See Fig.6 (b) for an example, even though the two blocks are
adjacent, HPWL estimation ignores T’s height.

NP Algorithm avoids the time consuming “shortest path compu-
tation” and is therefore expected to be very fast.

We did an experiment to show the average errors of 5 trials during
SA, using ami33 benchmark, while using exact MWL length for SA
cost function. We take average of the last 50 counts(within 110%
of the chip area). The average error wire length between exact wire
length of all the 2-pin nets and the wire length only considering the
detours around terminals is 401, while the average error between
exact wire length and the length estimated by HPWL is 1630. We
can see that NP gives much less error than HPWL.

4. Experiments

We use Simulated Annealing (SA) to optimize the block place-
ment for both area and wire length. Fig.7 shows a block place-
ment on the chip, the smallest rectangle that can cover all blocks



is called bounding box. While, bounding,, and bounding, stand for
the weight and height of the bounding box, respectively. chip,, and
chipy, stand for the weight and height of the chip, respectively. The
target of SA is to minimize the following function (1).

bounding,,
A

bounding,,

chip,,

Figure 7 The chip and bounding box of a placement.

10talcos = Wir€yeigh * Wleoss + (1 = Wireyeigh) * areacos

MAX(O0, bound,, — chip,,) + MAX(0, bound,, — chipy)
chip,, chipy

wl/ (nety, * (chip,, + chipy)) (¢)]

aredc,q

Wleost

Where wi stands for the total wire length of all the nets (we take the
HPWL for the multi-pin nets), net,, is the number of all nets. In the
experiment, wirey.igy is set to 0.5, so we estimate by half of area
cost and half of wire length cost.

4.1 Experiments on different estimations

Table 1 is the experimental results of cite MCNC & GSRC apply-
ing SA. The results are the averages of 10 trials. The rows list the
results of applying different algorithms in SA. The third row are the
results of VG Algorithm, LUT Algorithm and Speedup Algorithm of
LUT. Since the block placements are generated by the same seeds,
the results are the same as each other (except the time). The wire
length results based on the final placements of applying SA. The
first column are the results of final placement calculating 2-pin net
wire length using HPWL model, the second column used NP, and
the third used LUT to calculate the exact wire length of 2-pin nets.
The fourth column is the number of detour nets. The fifth column
shows the percentage that the exact wire length and the wire length
estimated by HPWL differs by. The sixth column shows the per-
centage that the exact wire length and the wire length estimated by
NP differs by. The seventh column is the wire length of multi-pin
nets using HPWL model. The last column shows the timings during
SA.

We can see using algorithms that we proposed to calculate the
exact wire length of the placement during SA obtained the better
placement results. Because the wire length is shorter than the result
applying HPWL, the wire length of detours is the least.

Note the runtime shown in Table 1 on calculating exact wire
length, in ami33 benchmark, VG spent the least time. But as the

number of blocks increased, VG becomes the slowest. LUT is

much better than VG. When the number of blocks becomes more
and more, the Speedup Algorithm of LUT showed its efficiency.
But it is still over 20 times longer than HPWL. The NP Algorithm
consumes only several times longer than the HPWL-based method,
while the degradation of the accuracy is little in ami33 and ami49
benchmarks. This verified that detours around obstacles tend to oc-
cur near the terminals.

However, in n100 benchmark, NP obtained a worse exact wire
length than HPWL. We noticed that the difference between the ex-
act wire length and the wire length estimated by HPWL is not that
much as ami33 and ami49 meanwhile. We found that the blocks in
n100 benchmark are rectangles close to square. The average aspect
ratio of all the blocks in n100 is 1.71, while the aspect ratio of ami33
and ami49 are 2.02 and 2.20, respectively. Therefore, we verify the
aspect ratio of blocks affect detour a lot in the next experiment.

4.2 Experiment on how the blocks’ aspect ratio affects de-

tour nets

We take ami33 and ami49 benchmarks to do this experiment.
The experiment keeps the area of block, and change the widths and
heights of the blocks. The experimental results are shown in Fig.8
and Fig.9.

The number of detours in ami33

¢ HPWL = LUT

8 8 8

s

the number of detours
~N
o

=

long/short

(a) The number of detours

The WL of detours In ami33

* HPWL *® LUT

20000
15000
10000

5000

the WL of detours

long/short

(b) The length of detours

The number and length of detours using HPWL and LUT estima-
tion in ami33 benchmark.

Figure 8

The horizontal axis is the average aspect ratio of the blocks The
results of the number and the wire length of the detour nets are the
average results of five trials. We observed that the larger the aspect
ratio is, the more the detours are, and the longer the lengths of de-
tours are. Using HPWL underestimate the wire length, as the aspect

-47-



Table 1 Experimental Results for Benchmarks

. 104 2-pin nets multi time (s)
ami33 " "HPWL | ExactWL | # detour | (ExactWL-HPWL)/Exact(%) | (ExactWL-NPYExact(%) | HPWL | VG | LUT | Speedup
HPWL 52234 | - 54707 20 4.52 . 22829 15
NP 50252 | 51629 14 267 0.81 22697 64
VG& LUT& S | 51623 | 52864 12 235 - 21642 [300 [ 317 | 328
336 2-pin nets mult time (s) -
a4 HPWL | ExactWL | # detour | (ExactWL-HPWL)/Exact(%) | (ExactWL:NPYExact(%) | HPWL | VG | LUT | Speedup
HPWL | 622326 | 660007 | 82 571 - 287703 31
NP 612749 | 639189 | 58 4.14 056 267709 180
VG& LUT& S | 586771 | 610775 | 63 393 - 268939 [ 1081 | 731 | 734
787 2-pin nets multi time (8)
ni00 HPWL | ExactWL [ # detour | (ExactWL-HPWLYExact)(%) | (ExactWL-NPYExact)(%) | HPWL [ VG [ LUT [ Speedup
HPWL | 271605 | 276867 | 214 1.90 - 41315 91
NP 273888 | 278441 | 195 1.64 0.76 42128 850
VG&LUT&SS | 271637 | 275362 | 178 135 - 40784 | 5031 [ 3149 | 2997

- -
o [
° o

[
o

the number of detours

long/short

The number of detours in ami49

¢ HPWL = LUT

(a) The number of detours
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The WL of detours in ami49
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Figure9 The number and length of detours using HPWL and LUT estima-

tion in ami33 benchmark.

ratio increases, the error becomes larger.

5. Conclusions and Future Works

In[5], we discussed the theoretical results on the obstacle-aware
estimation of the wire length of two-pin net. This paper imple-
mented the algorithms of [S], and found that the preprocess takes a
lot of time which can not be neglected. Thus, we proposed Speedup
Algorithm of LUT which speeds up LUT Algorithm, but still con-
sume over 20 times longer than HPWL method. Therefore, we pro-

posed NP algorithm which can greatly improve the speed with min-
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imum sacrifice in accuracy finally. With our proposed methods, the
theoretical algorithm in [5] turns into a practical approach.

In this paper, we only discussed the case in which all the blocks
are obstacles. It is easy to extend our method to handle the case in
which a part of the blocks are opaque, by building the HVG based
on those opaque blocks only.

Extension to handle multi-pin nets and integration of routing con-
gestion should also be considered in the future.
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