HEEA HRLEZE HAHG
IPS] SIG Technical Reports

2008—SLDM —135 (2)
2008./5./8

Checker Circuit Generation for SystemVerilog Assertions in Prototyping
Verification

Mengru WANG' and Shinji KIMURA''

t Graduate School of Information Proﬂuction and Systems, Waseda University 2-7 Hibikino, Wakamatsu, Kitakyushu,
Fukuoka 808-0135 Japan
E-mail: mengru@ruri.waseda.jp

Abstract:

Reduction of verification period is the crucial problem in the recent LSI designs, and prototyping/emulation technologies are

used for the reduction. Assertion-Based Verification (ABV) has been paid attention to check design errors at run time in simulation, and it

has become an important to combine ABV with the prototyping. In the manuscript, we discuss about a generation method of checker circuit

for SystemVerilog Assertions (SVA's). SVA is one of standard method to describe assertions in ABV. In the checker circuit generation, we

focus on the hardware cost reduction.

Keyword Assertion-Based Verification, SystemVerilog Assertion

1. INTRODUCTION

As the advances in LSI process technologies, we can
integrate tons of transistors in one chip, but at the same
time we suffer from the design verification of such
(ABV)
recognized as one of effective pre-silicon validation

circuits. Assertion-Based Verification is
methods especially for the protocol verification and the
design reuse.

In AVB, assertions showing the correct circuit behavior
are described and their satisfaction is checked in the
simulation. There have been proposed several assertion
description methods: Forspec (Intel) [6], Sugar/PSL
(IBM/Accelera) [7], OVA (Synopsys), Recently,

SystemVerilog Asserion was proposed as a part of

etc.

SystermVerilog language, and has been accepted as a
standard of the assertion description language.

Basically, assertion descriptions are to check the
correctness of the circuits' behavior in simulation, the
synthesizability of them is not considered. However with
the recent progress of Field Programmable Gate Arrays
(FPGA's), the check of assertions under prototyping
environment becomes an important issue. A basic strategy
of SVA synthesis has been proposed in [1], in which SVA
expressions are handled in 4 groups respectively, Simple
(SSE), Sequence
Expression (ISE), Complex Sequence Expression (CSE)
and Unbounded Sequence Expression (USE) and checker
circuits are built based on 3 sequence expression blocks,

Sequence Expression Interval

namely, SE block, Delay block and Interval delay block.

-7-

In [2], some typical checker circuits have been described,
such as checker circuits for clock cycle delays and
implication operators. These proposed methods only
discuss SVA checker circuit generation for each kind of
SVA syntax separately. Hardware cost issue has not been
addressed.

The checker circuits generated based on SVA also
consume hardware resources on FPGA during emulation,
for large designs, the checker circuits might dissipate
such a large amount of hardware that it is even impossible
to build the prototype of the design. In this paper, we
discuss the hardware cost of SVA checker circuit
generation in a holistic way and show a possibility of
optimizing checker circuits in order to reduce the
hardware cost of SVA synthesis by sharing hardware
among similar checker circuits. We also propose a new
checker circuit for clock cycle delay in SVA by using
counter circuits instead of register arrays, thus the
hardware cost can be further reduced.

The rest of the paper is organized as follows: Section 2
shows the basic syntax of System Verilog Assertions and
previous methods of generating checker circuits. Section
3 describes the basic idea of a counter-based generating
method for delay operation and also a hardware reduction
method by sharing hardware of checker circuits. Section 4
gives some experimental results to show the efficiency of
the proposed methods. Section 5 gives the conclusion and
some further work.

2. PRELIMINARIES
2.1. Assertion Based Verification

An assertion is an expression that is capable to indicate
certain behavior. Assertions are usually used to debug by
finding can't happen errors. When used in hardware
description language (HDL) designs, an assertion checks
for specific behavior and displays a message if it occurs.
Assertions are generally used as monitors checking for
bad/good behavior. For our purposes, an assertion is a
statement about a specific function or property that is
expected to hold for in a design.

Assertion-based verification, as is shown in Fig. 1, is
obtained by extending the capabilities of assertions by
employing some strategy that uses them as a central target
for a variety of verification methods. Assertion-based
verification is the use of assertions for the efficient
validation of a specification collection by the synergistic

verification, and

formal

application of simulation,
semi-formal verification.

SystemVerilog Assertions |- '

Fig.1. Assertion-Based Verification with SVA

Limited by the speed of simulation, SVA has not been
widely adopted in large scale SoC designs. In order to
accelerate the ABV on hardware emulation, an issue of
converting SVA into synthesizable HDL code has been
addressed.

2.2. SystemVerilog Assertion Syntax

In this section, we introduce basic syntax of SVA. The
basic SVA building block is called Sequence Expression

(Seq),
expressions.

all SVA properties are based on sequence

The simplest sequences are signals or
Boolean expressions and more complex sequences consist
of simple sequences and various operators, like temporal

operators, etc, which is shown as follows:

seq::= [delay_range] seq {delay_range seq}

-8-

[seq and seq

[seq or seq

[seq intersect seq

[seq within seq

[seq throughout seq

['(’seq)’

[seq [con;vecutive_repeat]

/seq [Boolean_repeat]

[seq {‘,’ seq_match_item} [consecutive_repeat]

[seq {‘," seq_match_item} [Boolean_repeat]

where delay_range, consecutive_repeat, Boolean_repeat
and seq_match_item are show below:
delay_range ::= ‘##’ constant_expression
['##° ‘[’ const_range_expression ‘]’
'
const_range_expression ::= constrant_expreesion : ‘8"
[constrant_expression : constrant_expression
Boolean_repeat ::= consecutive_repeat
[nonconsecutive_repeat
/goto_repeat

consecutive_repeat::= ‘[’ '*’ const_range_expression‘]’
nonconsecutive_repeat::="'[’‘="const_range_expression‘]
goto_repeat::= ‘[’ ‘->’const_range_expression ‘]’

The structure of an SVA property is as follows:

prop::= seq

|event_control prop

| ‘(’ expression ‘)’

[not prop

[prop or prop

[prop and prop

[seq [=> prop

[seq [-> prop

[if ‘(’ expression ‘)’ prop [else prop]

where |-> and |=> are called overlapped implication

operator and non-overlapped implication operator,
if-then
structure. The left hand side of the implication is called

the “antecedent” and the right hand side is called the

respectively. Implication is equivalent to an

“consequent”. The antecedent is the gating condition. If
the antecedent succeeds, then the consequent is evaluated.
If not, then the property is assumed to succeed by default,
which
messages are displayed. Implication construct can be used

is called a *“vacuous success” and no error

only with property definitions. It cannot be used in
sequences. The difference of these two implication
operators is that the evaluation of the consequent starts at
the same clock cycle at which the antecedent matches or

one clock cycle later.

2.3. Previous Work on SVA Syntheéis

A divide-and-conquer approach for synthesis SVA
sequences has been proposed in [1]. The basic idea is to
break the of
expressions concatenated with the corresponding cycle

sequence expression as a sequence
delay. They generate checker circuit for each small
sequence and then connect them so that these checker
circuits can perform as the actual sequence expression. In
[2], basic cycle delay and implication circuits are given,

as shown in Fig. 2.

si?‘ D

P

a |
D
D
b
(c) basic temp P
a |
D D
b P D
(d) P clrcuit

Fig.2. Basic checker circuit generation

The cycle delay is implemented by using register arrays,
as shown in (a), while interval delay circuit is described
in (b), with all the outputs of registers in the time window
connected by an OR gate. Sub-figure (c) shows the basic
sequence expression with timing relation. In (d), the
checker circuit for implication operator is shown.

These typical structures of checker circuits can be used
to form much more complex checker circuits. On the
other hand, the divide-and-conquer approach focuses on

the basic block of SVA checker circuit but neglects the
holistic optimization. For complex designs, very large
sets of SVA properties are required for the complete
verification; therefore, hardware resources are consumed
the An
optimization method is needed to handle the hardware

heavily by divide-and-conquer approach.

cost issue from a holistic view.

3. SVA CHECKER CIRCUIT GENERATION
3.1. Counter-Based method

In the existing methods, shift-registers are used for the
delay evaluation. If the delay value is n, then they use n
registers. It is not efficient for large n. The basic idea of
the proposed method is to use a binary counter for the
delay evaluation. With this, the number of registers
becomes log(n) for delay value n. This is called the
counter-based method.

The basic structure of the checker circuit is shown in
Fig. 3. That shows a checker circuit for the following
property.

a#t#l1b##lc

The circuit includes a 2-bit counter, a decoder and the
control logic of the counter. We control the count-up/reset
of the counter by using the input signals and the output of
the decoder. The counter counts up only when some input
signal occurs at the corresponding clock cycle, otherwise
the counter will be reset. For example, if a holds at clock
0, then we control the 2-bit counter to become 01, then
we check whether b holds at clock 01. If so, we continue
to count up to 10 and check the value of c. If ¢ also holds
at 10, then the property succeeds.

In FPGA prototyping, a logic element (LE) containing
an LUT with 4 inputs / 1 output and a register is used to
implement logic circuits. So, we use the number of LE’s
to measure the hardware cost.

2-bit Counter

Decoder

0 1 2 3
c
al |P
at1b#il1c

Fig.3 Counter-based delay unit

In Fig.3, 4 LE’s are required to implement the
counter-based checker circuit: 2 LE’s for the counter and
2 LE’s for the decoder and the control circuit with a, b
and c, while the register-array based method only needs 3
LE’s. Therefore, we should carefully check the feasibility
when using the counter based method for the short delay,
which will be discussed later.

For longer delays, the counter based method is
expected to reduce the hardware cost compared with_the
previous method. An application example of the counter
based circuit for a ## 8 b ## 8 ¢ [=> d ## 1 e with 18
clock cycle delay is shown in Fig.4. The property is over
18 clocks. Since the time separations between signals are
more than 1 clock cycle, we can not use just one OR gate
to control the increment of the counter as in Fig.3. The
increment logic in the figure includes registers to keep
the counting-up states, and becomes a complex circuit.
Once the signal a holds, we should count up during 8
clocks. Though the increment control logic of the counter
becomes more complex, the checker circuit can be
implemented with only 10 LE’s which is smaller than the
circuit with 18 LE’s by the previous method. If the delay
value becomes larger, we can reduce much more LE’s in

the checker circuit implementation.

5-bit Counter
Increment
Decoder Logic
0 8 16 17 18
c d e

9

Fig.4. Counter-based checker generation for long
delays

The counter based method is effective for large delay
value, but seems not so effective for small delay values if
we use the basic structure shown in Fig. 3. With devising
the state coding in constructing the counter structure, we
can reduce the hardware cost for small deval values.

Consider the following property:

a#flb##tlc[=>d##1e (¢))]

The checker circuit generated with the previous method is
shown in Fig.5:

Fig.5 Previous checker circuit for property (1)

This checker circuit is constructed from 4 registers, and
there are no overlap conditions, so the circuit can be
modeled as a finite machine with 5 states. The state
transition table is shown in Table. 1. According to the
SVA syntax, if inputs signal d and e do not occur at S3
and S4 respectively, the output becomes 0, otherwise the
output of the property is 1, as shown in Table. 2

Table.l state description of property (1)

Current state a b c d [Next state
S0 1 0 0 0 0 S1
S1 0 1 0 0 0 S2
S2 0 0 1 0 0 S3
S3 0 0 0 1 0 S4
S4 0 0 0 0 1 S5
Table.2 output of property (1)
Current state a b c d € output
S3 0 0 0 d 0 d
S4 0 0 0 0 e e

To generate the checker circuit using the counter-based
method, we discuss the Boolean function according to the
state machine. Assuming that signal c0, cl and c2 are
used to identify the states; the state transition can be
described in the form of truth table in Table 3:

Table.3. State transfer of property (1)

Current state Next state
c2 [cl | cO| a b c d e | c2|ecl|cO
0 0 0 1 0 0 0 0 0 0 1
0 0 1 0 1 0 0 0 0 1 0
0 1 0 0 0 1 0 0 1 1 1
1 1 1 0 0 0 1 0 1 0 0
1 0 0 0 0 0 0 1 0 0 0

Note that c2 is 1 at S3 and S4. Based on the assignment,
we can describe the “next state” function as follows:

Next cO=cl’c0’a +clcO’c
Nextcl =cl’cOb +cl1cOc - -
Nextc2=clcO’c+clcOd

The output Y is described as a function on c2, cl, d and e:
Y=(c2cld +c2cle)

With the assignment, all functions have less than 4 inputs,
which means each of these functions can be implemented
with one LE. The checker circuit by the counter based
method uses only 4 LE’s. Note that 5 LE’s are used in the
checker circuit by the previous method and we gain 20%
hardware cost reduction.

The counter based method is effective for not only
large delay values but also small delay values. For long
delay property, the number of LE’s can be reduced to
log(n) instead of n by the previous method. For short
delay property, the counter based method might reduce
the number of LE’s by devising the state encoding. The
efficiency of this counter based method should be
checked by using synthesis tools.

3.2. Hardware Sharing Between Properties

In this section, we discuss about the possibility of
hardware sharing between properties. In previous works,
one checker circuits is generated for each property, which
implies that the hardware resource of checker circuits is
proportional to the number of SVA properties. In practice,
since several properties have similar structures, we would
like to use the similarity of the properties to share
hardware resources in order to reduce the total hardware
cost.

The basic sharing is to share the matching part from the
beginning point of several properties. For example, we
can share a ## 8 part of the following two properties.
Note that a ## 8 starts from the beginning in both
properties.

Property 1: a##8b##8c[=>d## le
a## 8 f## 8 c

@
Property 2: 3)
We can also share the matching part from the ending point
of properties in almost the same way.

Interval matching part like b##8 and f##8 in the above
properties should carefully be processed. One method is
to use flags keeping which value is entered. A simple

-11-

example is shown in Fig.6 to show the basic idea for the
previous properties.

In Fig.6, we first generate the checker circuit of
property 1 using the counter-based method, then we add a
OR gate to select signal f and b, so that the evaluation of
the checker circuit continues if f or b holds at clock 8. A
Register Logic block is also built to temporarily store the
value of f and b at clock 8 and use these stored values to
control the output of property 1 and 2 respectively. For
example, after a holds at clock 0, we control the counter
to count to clock 8, then the value of fand b are stored by
the register logic block, if either b or f holds at clock 8,
we continues the evaluation and check signal c at clock
16, if ¢ also holds, we load the stored value of f, if it is
one, then property 2 succeeds. We also check the stored
value b at clock 18 to see if it is property 1 that is
evaluating. By this method, we implement a checker
circuit for two properties using the hardware resources for
just one checker circuit.

5-bit Counter

0 816 17 18
aéf b [c]| d e
air8b#8e
|| =>d##1e
Q | |
delayed_b
|— 1
Register

Fig.6. Hardware sharing between properties.

In reality, large parts of properties might be capable to
share checker circuits for certain designs. Therefore, the
hardware sharing method is expected to achieve large
hardware cost reduction. The efficiency of this method
has been checked experimentally.

4. EXPERIMENTAL RESULTS

The hardware costs of the counter-based method and
hardware sharing method are examined using Altera
Quartus II 7.1. We have applied the proposed method by
hand to several properties and evaluated the checker
circuits on EP1S25F1010C5 with Quartus II. Quartus II is

executed on a computer with an Intel Pentium(R) 4
2.66GHz CPU and 1GB memory.

For a property a ## 1 b ## 1 ¢ [=> d ## | e mentioned
in Section 3, the synthesis summary shows that the
checker circuit generated by previous method costs 5 LUT
and 4 registers, that is 5 logic elements totally, while the
checker circuit of counter-based method costs 4 LUT and
4 register, 4 LE in total, which is a 20% reduction
comparing to the previous method. For a property with
longer delay, like a ## 8 b ## 10 c, the previous method
costs 18 LE while counter based method costs only 9 LE,
50% hardware reduction is observed.

Hardware sharing between property a ## 8 b ## 8 ¢ [=>
d ## 1 e and property a ## 8 f ## 8 c¢ has also been
compared. The two checker circuits generated by previous
method cost 18 LE and 16 LE respectively, therefore, 34
LE in total. The checker circuit with sharing only costs 10
LE. With the 70.6% reduction, the proposed hardware
sharing method is proved to be effective on reducing
hardware cost.

5. CONCLUSION

In this manuscript, a novel method of SVA checker
circuit generation is proposed. For the cycle delay
operation, we use counter circuits instead of register
arrays, which reduces the hardware cost from O(n) to
O(log(n)) for long delay, by our experiment, over 50%
hardware reduction is obtained on a property with 18
clock cycle delay. For short delay properties, we also
developed a effective method to reduce the number of
related signals for each logic function so as to implement
each function with less LUT’s, about 20% of hardware
reduction is observed for a property with 5 clock cycle
delay.

By observing the SVA properties for many LSI designs,
we notice that some SVA properties have similar
structures. So we share hardware between these properties
in order to further reduce the hardware cost for SVA
By
circuits, the checker circuit can dynamically switch

synthesis. introducing multiplexers into checker

between the evaluations of shared properties. Some
experiments using synthesis tools are executed and about
70% hardware reduction is observed.

Our further work would be to develop an algorithm to
automatically convert SVA properties into synthesizable
Verilog code based on the counter-based method and
hardware sharing strategy.

-12-

Acknowledgement

The work is supported in part by a fund from Toshiba,
and by a grant of Knowledge Cluster Initiative
implemented by Ministry of Education, Culture, Sports,
Science and Technology(MEXT).

. References
Das S, Mohanty R, Dasgupta P, Chakrabarti P.P.,
“Synthesis of System Verilog Assertion”, DATE
2006, Volume 2, pages: 1-6, Marth 2006.

Boule M, Zilic Z, “Incorporating efficient assertion
checkers into hardware emulation”, ICCD 2005,
pages: 221-228, Oct. 2005.

Pellauer M., Lis M., Baltus D., Nikhil R, “Synthesis
of synchronous assertions with guarded atomic
actions”, MEMOCODE 2005, pages: 15-24, July
2005.

Srikanth Vijayaraghavan and Meyyappan
Ramanathan, “A Practical Guide for SystemVerilog
Assertions”, Springer Science+Business Media Inc,
ISBN 0387260498.

Harry D. Foster, Adam C. Krolnik and David J.
Lacey, “Assertion-Based Design”, Springer
Science+Business Media Inc, ISBN: 1402080271.

Roy Armoni, Limor Fix, Alon Flaisher, “The
ForSpec Temporal Logicc: A New Temporal
Property-Specification Language”, Proceeding of the
8™ International Conference on Tools and
Algorithms for the Construction and Analysis of
Systems, pages: 296-211, 2002.

“IEEE Standard for Property Specification Language
(PSL)”, IEEE Std 1850-2005, papges: 0_1-143,
10.1109/IEEESTD.2005.97780.

(11

(21

(3]

[4]

(51

(6]

[7]

