AR =F 4T 2F A8 24— 8
(1984 9. 21)

NUE/TAO/ELIS® OSHY {8 E
Tt B IF KE LB

(AFBEEEL4 KRBFERBEHA)

1. INTRODUCTION

NUE (New Unified Environment) is a total programming environment which supports
AI research and AI software development. NUE is:

(1) Based on list processing language TAO implemented on Lisp machine ELIS [1]
(2) Used mainly (co-operating) researchers and professional programmers

(3) Highly interactive via advanced terminals

(4) Suitable for large program development.

NUE, as expected from its name ("nue" in Japanese means a legendary Japanese
chimera with monkey's head, ‘tiger's limbs, racoon's body, serpent tail and
golden mountain thrush's voice, or such incredible mixture of somethings), is
so designed that it incorporates everything useful for AI programming. We
think that the tool for AI research is necessarily monstrous because AI -itself
is intrinsically monstrous. Thus, the Kkernel 1language TAO is a multiple
paradigm programming language which combines Lisp, Prolog, Smalltalk and even
Fortran on the basis of S-expression . -of .Lisp. :TAO <can meet various
requirements that arise in practical AI programming. (The "monstrous" here is
not the word for aesthetics of programming language design and its
implementation, it represents the richness of the language functionality.)

The name TAO is originated from the ancient .Chinese philosophy "“Taoism", and
the language design itself 1is strongly influenced -by the - philosophy. For
example, the words of the first chapter of Tao Te Ching,

"The Tao that can be Taoed is not the true Tao"

implies the vital evolving power of = the TAO; TAO does not stay .at a fixed,
stuffy, bureaucratic position; TAO will -change and augment its functional power
being motivated by user's needs and implementor's new ideas. The programming
environment NUE also inherits this basic philosophy because .the .border of
environment and Kkernel language is blurred anyway in. such a conversational
programming system. In this sense, NUE is more vague than TAO for the present
'since TAO becomes concrete only recently. There is only dream of NUE. now.
There is not.any solid design of NUE. - NUE will . emerge and become clearer . as
time passes since the current status of TAO/ELIS ' is sufficient. enough to
experiment novel ideas on programming environment without much effort. The
various ideas will be fused into some ideal solution through "artificial® and
"natural" selection. :

This report will describe mainly ' the 0S facets of the language TAO, but also
show some ideas of the first stage NUE. : .

2. MULTIPROGRAMMING

Multiprogramming facilities .are embedded in TAO and: their crucial part is
implemented by firmware (about 1 Ksteps). Typical process switching time is
‘less than 20 or 30 microseconds. :

‘Bach process is an object in the Smalltalk sense, called udo (acronym of User
Defined Object). Process udo's structure -‘is. shown in Figure 1. Process
creation and maintenance is programmed partly in object oriented style of TAO.
Semaphore and mailbox described below are also realized as a udo.

FIGURE 1. Structure of process udo.

{udo}28457process, an object of class process (version 0),
has instance variable values:

foblist: {vector}28451 (oblist . 10)

Istatus: . #10 ... bit table of process status

Iwhostate: ‘ : running ... simplified mnemonic of process status

Ipriority: 2

Iwait-for-what: (4 5) ... semaphore, mailbox, etc. used also as
return value slot

lresumer: nil ... used when process is used as coroutine

sys!prestk-memblk-list: nil ... list of swapped stack contents block

sys!sp: {stkpt}32509 ... preserved stack pointer

sys!sbr: #7002 ... preserved stack boundary check register

sys!bottom-stack-block#: #17 ... stack block at bottom

!name: gonbe ... pProcess name an

linterprocess—-closure: nil ... shared variables with other processes

finitial-function: top ... process's first function [top-level loop]

tinitial-argument-list: ({udo}27952fundamental-stream ... [top's arguments]
{udo}27982fundamental-stream)

lguantum: 5 ... [this process will run: at most 5 * 20ms]
tlogin: {udo}28440login ... login that creates this process
linterrupt-fn-args: nil ... form that will be evaluated on interrupt

(set when interrupt actually occurs)

Process's waiting state is one of the following:

(1) I/0 wait: Wait for I/0 ready signal interrupt from FEP.

(2) Semaphore wait: Semaphore is the counting type.
Semaphore is a udo with two instance variables:

. sys!semaphore-process-queue
sys!semaphore-~value . ‘

(3) Mail wait: Arbitrary S-expression may be posted in Mailbox.

Mailbox is a udo with two instance variables:
sys!mail-process-queue
sysl!mail-queue :

(4) General wait: Wait until a TAO form evaluates to non-nil value. The
evaluation can be performed either every 20 millisecond, or every 1
second, or every 1l minute.

(5) Timeout wait: Wait until a certain amount of time elapses. Timeout
wait can be overlapped with one of the above waits.

ELIS has 32K word high-speed stack memory which is segmented into 16 stack
blocks of 2K words. -Each process is associated to a number of consequent stack
blocks dynamically. That is, the number of consequent stack blocks allocated
for a process gets larger when the process consumes much stack memory and
reduces when it needs fewer stack memory. An internal table controls which
process occupies each stack block. If many processes run concurrently, ' stack
block occupation conflict may occur. In that case, the process which is
currently sleeping or waiting will release the conflicted block and save the
stack contents into main memory. When the process gets to run, the saved
contents are restored. This swapping, however, brings in only 1less than 2
millisecond overhead per one stack block even in the worst case where both
swap-out and swap-in take place simultaneously.

Since stack memory of ELIS has a ring structure, one process could utilize full
32K word stack memory regardless to the stack bottom address. However,; TAO
does not exploit the ring structure because of some implementation convenience.
(One of the .16 stack blocks -is utilized for system working .area which must
accessed faster than areas in main memory, for example.) This may cause. a
problem that a process whose stack bottom is near to the system reserved stack
block has a limited stack capacity much less than the maximum available stack
capacity. However, this problem can be alleviated by the stack contents
relocation because the contents are almost self relocatable.

Anyway, the stack block " ‘allocation for concurrent processes is not a trivial
problem. We don't know the best solution yet, but we expect that we can
experiment a variety of allocation algorithms by using TAO, not by rewriting
microcode, because TAO has abilities to clobber any word and any stack address
of ELIS.

Common variables shared by two.or more concurrent processes are packed into . a
Lisp function closure (See interprocess-closure in Figure 1). Function closure
is a data structure which holds pairs of variable names and their values.
Since variable binding information itself can be treated as a kind of concrete
data type, variable sharing can be realized quite naturally in such Lisp type
language TAO which has no block structure like Algol..

3. OBLIST GRAPH --- MULTIPLE NAME SPACE

Lisp's identifiers (atom) are unique in the sense that two identifiers with the
same print name are identical. The fact that identifier itself 1is an
individual data type and identifier is unique is one of the most important
features of Lisp which mark off Lisp from other conventional programming
languages. However, same identifiers often conflict each other when many
programmers are involved in developing a large scale application software in
Lisp. Moreover, important (globally accessed) identifiers and unimportant ones
are all at the same level, which makes it harder to maintain 'the program
modularity. TAO, as ZetaLisp [2] did, allows that more than one identifiers
with the same print name co-exist in the same Lisp environment. However, TAO
goes further than ZetalLisp in that TAO allows multiple users to share some
common identifiers and not to share other identifiers intentionally according
to the level of their co-operation.

Traditionally, Lisp controls the identifier uniqueness by a device called
oblist or obarray which is essentially a hashed name table. To realize
multiple name space as described above, more than one oblists (or obarrays)
should be arranged in some structured manner. TAO arranges oblists in a tree
structure whose root is named ™univ". Direct successors (suboblists) of univ
is: bas (oblist for basic TAO), sys (oblist for system programmer's TAO), and
key (oblist for keywords which are very commonly accessed from all oblists).
This is a static structure determined at the oblist creation time. Moreover,
each oblist can dynamically span arbitrary access path from it (called
ref-oblists), thereby any kind of trans-tree short-cut access to other oblists
is possible. Figure 2 shows the oblist structure.

FIGURE 2. Oblist structure (realized By a vector, not a proper udo)

e . e ———— —_——

| oblist | 10 |

e —m—————— +

I oblist-name ! hash-table |

+-= B ettt e R -—+

| . read-handle | write-handle | for I/0 customizing
B et LT + - ————t

I suboblists | parent-oblist | for tree structure
Fom e +.

| ref-oblists | ~codnum-assoc-list | trans-tree access/*
+-— - +-— : e e +

| associated~-file | property-list

+——. —— - + e o e o s i i O e o +

Each identifier in an oblist is either external or internal; external
identifier can be accessed from other oblists without explicit designation of
oblist name, but internal one cannot.

An oblist, called current oblist, is associated with each process. When an
identifier is input (or "intern"ed), the following search rule is applied:

(1) . 1If the identifier is of the form'A,
(a) search the current oblist
(b) search ref-oblists (a list of ref-oblists) one by one from the top
(c) search parent-oblist chain from near to far
(d) if not found, create A in the current oblist

(2) If the identifier is of the form A!B!...!Y!Z

(a) if the user has not the privilege, error.

(b) search an oblist which.embraces A. If found, examine .the oblist name,
If it equals to A, restart searching for BI!C!...!Z from the oblist.
If it does not equal to A, examine the names of the suboblists whether
one of them equals to A. If such one is found, restart searching for
BIC!...!Z from the suboblist.

(c) if one of oblist-name is not found, create Z in the current oblist

(d) if just the Z is not found, create it in A!BIC!,..!Y oblist

(3) If the identifier is of the form !(A
(a) search key oblist for A
(b) if not found and the user has the privilege, create A in key oblist

As can be seen above, a certain kind of access to other oblist is forbidden if
the user has not appropriate privilege. There still remains some issues among
us on how to deal with the modification of identifier's property (function
definition, property, global value) from users in other oblists. (Controlling
them completely by user's privileges may burden some primitive Lisp operations
with overhead.)

The following functions are used to control the identifier scope.

(export idl id2 ... idN) makes idl, id2, ... idN external.

(intern-local* idl id2 ... idN) makes idl, id2, ... idN local to the current
oblist. That is, even if idj in another oblist are accessible from
here, intern-local* creates new idj with the same print name in the
current oblist. (ZetaLisp calls this feature "shadowing".)

(import idl id2 ... idN) deletes idl, id2, ... idN from the current oblist.
This cancels the effect of intern-local¥*.

4. MULTIPLE USERS

As opposed to the current trend that single language dedicated machine is
developed as a super—-PERSONAL machine, the first step of NUE is to develop a
simple multiple user environment. We think that most super-personal machines
are too work-station oriented, and hence much design effort and much CPU power
are devoted to the cosmetology to make the system's face beautiful. We aimed
at the powerful engine for AI at first, that is, a clever machine rather than
smile selling machine, which can be achieved at the second step on a clever
machine.

We assume that most users who log in co-operate to certain extent to achieve a
common goal. Hence, protection between users are loose for default. They can
access to and modify common data as they want. We expect that the co-operating
users are sitting in one room so that they can freely talk to each other on
their tasks. The number of active concurrent users is expected to be 4 or 5 at
maximum to guarantee the response time comparable to TSS Lisp on a high-speed
large scale computer. This usage of an AI machine would be suitable at least
for next few years from the viewpoint of cost performance and rapid build-up of
common tools.

Many people say us at a first glance that TAO/ELIS's fatal error is the lack of
bitmap display and mouse. We don't ignore them at all. But considering our
daily programming activity, we scarcely need them. We prefer to occupy two or
more dumb but fast terminals rather than occupy a single, expensive bitmap
display for the present, even after experiencing most of famous super-personal
computers such as LMI Lambda, Symbolics 3600 and Xerox 1100SIP. (Qur impression
on these systems is that their man-machine interface is excellent but too
slow.) We consider that bitmap display interface will be more improved in the
future and it will be an independent ready-made technology that can be easily
attached to AI programming engines such as TAO/ELIS. Hence, we decided to give
priority to develop a simple multiple user environment based on dumb terminal
of at least 9600 baud rate. ’

An ideal man-machine interface for personal use will be developed soon after we
complete the basic development of the first stage NUE. The technology we
obtain by making the first step will be inherited directly to the real
super-personal system.

5. CONCLUDING REMARKS

The language TAO runs only interpretedly <£for the present. After making the
very basic multiple user environment, we focus on the compiler construction by
which TAO will speed up by a factor of 3 to 5.

Then, the real-time garbage collection (GC) will be implemented. If ELIS has
only 4 or 8 megabyte memory, the current -batch type garbage collection makes
the user feel almost no timing delay since it takes only 1 or 2 seconds. The
algorithm of the real-time garbage collection is quite simple. It is a
variation of batch type mark-and-collect garbage collection. If any data
type's free storage becomes short, the GC process wakes up and runs
concurrently with other processes. GC process chases other process's stack
modification at its maximum speed; if a process runs in GC marking mode, GC
will mark the whole stack area for the process again from the beginning. After
some time, almost all data are already marked and hence GC process's chasing
will be much faster. Eventually, GC will catch up all the process. If it is
expected to take much time to catch up, GC process's priority and quantum will
be changed upward. In GC marking mode, only rplaca (replace car) and rplacd
(replace cdr) slow down quite slightly in order to check whether marked list is
rplacafd)ed by unmarked data. No other 1list processing suffers from the
overhead brought in by real-time garbage collection. The collection phase is
easier than marking phase; it collects free storage only by need. Further
detail is omitted here.

The next and very important one is network support. But we cannot say anything
about that for the present.

ACKNOWLEDGMENT

We gratefully thanks to Mr. Y. Hibino who developed the base machine ELIS and
now promotes NUE project. We also thanks his valuable suggestions.

REFERENCES

{11 H.G. Okuno, I. Takeuchi, N. Osato, Y. Hibino, and K. Watanabe: TAO - A Fast
Interpreter-Centered Lisp System on Lisp Machine ELIS, Conference Record of
1984 ACM Symposium on Lisp and Functional Programming, Austin, Aug. 1984.

[2] D. Weinreb, D. Moon, and R. Stallman: LISP Machine Manual, MIT, Jan. 1983.

