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ALTERNATING SERVICE QUEUES WITH SETUP TIMES

Takeshi TOKUYAMA and Hideaki TAKAGI
(IBM Research, Tokyo Research Laboratory, 5-19 Sanban-cho, Chiyoda-ku, Tokyo 102, Japan)

A single server system with two Poissonian arrival queues is considered. Each queue is served in
1-limited way with ‘setup time’. This system is useful for the actual simulation when the set-up time, much
longer than switching time, is not negligible.

Our result is an extension of those of Boxma and Cohen for the case without setup time. The
generating function of the length of each queue is an analytic function. Therefore, formulating our problem
as a Riemann-Hilbelt boundary value problem, we determine the generating functions and give a formula to
obtain the waiting time of customers by means of a conformal mapping and Cauchy integrals. The hardness
of its numerical evaluation depends on whether the setup time of a queue is the same as that of another

queue.
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Alternating service queues with setup times.

Introduction.

Recently, Cohen and Boxma has been conducting a series of analytic studies for systems involving two
queues using a technique of so-called Riemann-Hilbert type boundary value problem . Some of them deal
with alternating service queues such that two queues with independent Poisson arrival processes are
attended by a single server alternately. With respect to the number of messages the server continues to serve .
at each visit to a queue, we may think of four disciplines: exhaustive, gated, limited, and decrementing (see
Takagi [ 12] for terminology ). When orne of the queues has exhaustive service discipline or when both
queues have gated service disciplines, we do not need the Riemann-Hilbert type formulation. Therefore, our
interest here falls in the case where the two queues have both limited, both decrementing, or a mixture of
limited and decrementing service disciplines. (We have no results for a mixture of the gated service and the
limited or decrementing service disciplines.)

Another critenon for classification is whether a nonzero time is required for the server to switch from
one queue to another. Finally, there is a case where the two queues are statistically symmetric (both have
the same parameters ), and a case otherwise. According to the three criteria mentioned above, previous
works on this subject are classified as follows. For limited service systems without switchover times, Cohen
and Boxma [6] consider symmetric models, while Eisenberg [8] and Cohen and Boxma [ 7](sec.Il1.2 and
IV.1) deal with asymmetric models. For cases with switchover times, symmetric lmited service systems are
analyzed by Jisaku et al. {16] and Boxma [1], and asymmetric limited service systems are treated by Boxma
and Groenendijk [3]. An asymmetric, decrementing service is discussed by Cohen [5]. Finally, Coffman et
al. [4] analyze a system of two queues with alternating service periods, where an upper bound on the service
peniod duration is posed at each queue.

A feature common to these works is that they require the reader a background of mathematics,
particularly, that of complex analysis. Another point is that some of them provide only formal solution
without rendering themselves to numerical evaluation procedures. Consequently, useful results in the
above-cited papers are seldom utilized by practically-minded people. The purpose of this paper is to explain
the course of analysis and the typical technique, considering a system of limited queues with set-up times.
This system has applications in computer communication systems (e.g., half duplex transmission).

The rest of the paper is organized as follows. In section 1, we prepare notation and formulate the
problem. In section 2,-we demonstrate how to translate the problem into a Riemann-Hilbert boundary
value problem using an easy “kernel” ( a function of two variables which appears in the denominator of the
governing equation) to clarify the course of analysis. In section 3, we show technique to analyze the zeroes
of the original kernel on the complex plane. Finally, we comment on the numerical evaluation of the

waiting time in section 4.



1. Formulation

We consider a system consisting of a single server with two Poisson arrival streams of customers with
arrival rate A, and 4,.

The service is done in 1-limited manner, which means that the server leaves a queue after serving just
a customer of the queue (if it is not vacant). Besides, we consider the “set-up time” of the system. If both
queues become vacant, the system sleeps until a customer comes in. If a customer amives at queue i during
a sleeping state, the system wakes up after some set-up time S; (i= 1,2 ). §/(s)is the LST (Laplace-Stieltjes
Transform) of the distribution function of the set-up time. 5;= E(S)) and sf? = E{(S?) are the mean and the
second moment of S,

B;(s) is the LST of the distribution function of the service time B, for a customer of type i (i=1,2).
b= E(B) and b = E(B?) are the mean and the second moment of B,. The total server utilization is
p = Ab,+ Ab, . Then B(1— A,z — A,z,) is the generating function of the number of the customers ﬂoWing
into the system while a type-i customer is being served, where 1=1,+ 4, . Let ;= % for i=1,2.

Let us take the departure epochs of messages from both queues as Markov points. We assume the

process is stationary.

We define the generating function of the number of customers of the queues at the departure epoch from
queue i by

o0
def o
Oz, )= ) mGoE 7,
Jk=0
where
pljk) = Prob{ length ( Queue 1) =7 and length ( Queue 2) =k ; at the departure epoch from the queue i }.

For conventence, we wiite P, for 0,(0, 0y + Of0, 0) , which is given by

1—-p
=_=— S 13D. 1.1
Po 1+ A8+ A, (See [131) a0
Then the following formula holds:

Bi(A— Lz
Z;

e /1 * %
Az, )= ; ) {021, 2)— 2a(0, 2) + Os(21, 0) — Q1(0, O)} + Pory By S1 (A — 412, — 4,2)-

(1.2)

From symmetry of the system, we have

: A—A - /1 ] * _x
Outon, 7 = Z2EZ A1) 0,5 ) 01021, 01+ 040,20~ 00, O} + PoraB S - bz = 1)

(1.3)
Combining (1.2) and (1.3), we have the following:
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20(z, )22~ Bi(A — Az~ L,z)Bi(A — dyz, — Lz ={z—B(1— Az~ Lz} Bi(h — Az — Az)

[20.(z, 0)— 0:(0, 0)— 2040, )+ 940, 0)+ {2 Si(A — 4z — Lz) — 2,Sy(A — iz, — Ayz )} Py —

z+ BA— 4z — Az)
2z — Bi(A— Az — 4;2)

{ Hl—znS1(A — Az — Lhz) — 25S(A — 4z — PRI AR (1.4

The mean waiting time E{W,) of type 1 customer is given by a standard M/G/1-type argument. We have:
Ew)=-L Lo}, - b, (L3)
VTt dz = ’

The derivative follows (1.4) after a straightforward calculation.

dQ,(z1) _ =4k d0\(z.0)
B 7 e Bt ey -y v =l S B (1.6

where
b
1— A6, — 4,5,
R0+ Abb, A5 + B + 2b,by)

- + n—r
- Th— by T Al —Ahy ST

b{2ns; + ndysf + A ) — B n + nds + "21152)}
b22.

+nds +nl
_ A + rdys + x-‘z)}‘ (7
Ab,

J

{2nds +

Thus in order to obtain the mean waiting time, we must analyze the function Q,(z,0) and get its derivative at

z=1.

Rewriting (1.4) by using the notation

ai(z) £ 20,(z,0)— 0(0,0), (1.8.1)
a42z) £ 2040, ) — 040,0), (1.8.2)
and

Gz + 4z) &~ {2 Sih— Lz — 4z) — 2 Sih — Mz — Lyz)

_ zH+BU—ha - 12)

O Ty U= arSiA = At~ oz = 2 = = b))} P (183)
2! 141 2

we have the following:

Bi(d = iz, — L)z — By(A— Az — Lo y(z) — oz) — Gldyz, + Lz}
212y — B?(i — Az~ '{222)32’(1 — Az — 4z)

20((z1, ) = (1.9)

2. Boundary value problem with an easy kernel

We must consider the variety V consisting of zeros of the “kernel” 2z, — Bj(A — Az, — L,2)B5(1 — 4,2, — L,7,)

z, .
! | =1 - However, before that, in order to show the

of (1.9) in order to obtain the derivative
principle of analysis, we shall demonstrate how we formulate this type of problem into a boundary value
problem and solve it. To do so, we use an easy example when the kernel is z,z,— 1 (although it does not
represent any system).

The zero of the kernel is V3= {(z,, 2): 22 — 1= 0}. In order to simplify the analysis, we also assume here

that A, = 1, = %.



Suppose (z,, 2,) is an element of ¥, . Equation (1.9) implies that
oy(z) — oy(z)= Gld1z; + 1,2) (2.1)

on ¥V, provided that |z] < 1fori=12.
Since 4, = A,, and since [z] < 1 and |z| < 1 simultaneously hold on ¥, if and only if |z] = 1 ,‘we obtain

o1(2)— o3z = G(i Re(2)) 22
on the unit circle C= {z: [z] = 1}.
Now we have the following:
Observation 2.3.
o (2) is regular on the unit disk C* = {z: |z| < 1} and continuous on C'|J C* .
2. oz Y)is regular on C" = {z: |z| > 1} and continuous on CJ C-.
3. lim oz )= 0y0,0).
Equation (2.2) with the condition (2.3) provides us an easy Riemann-Hilbert boundary value problem

(Dirichlet problem) (see [9] sections 14.4 and 14.5). We can solve it using Cauchy integral..
The target functions are written in integral forms as follows.

Proposition 2.4 (solution).

(D)= Lj G4 Re@)) GARL) 74 000)  if <1
leC

2ri {—
and
oo =5 J 2D g+ 000 if >
leC

Thus, we have obtained 0,(z,0) and 040,2).

3. Boundary value problem for original kernel

We now return to kemel of (1.9) and solve the boundary-value problem referring to the procedure in section
2.

The zero of kemel is the variety V'= {(z,, z,): 22— Bi{(A— Az — L,z)B3(A — 4,2, — A,2) =0} .

Let w; 2rz for i= 1,2 . Then (2.1) is trapslated into

4 1( ) Gz(—— = G(—‘l(wl + wy)) (3.1)

on V, provided that fw,] < 2r, for i=1,2.



We shall consider the intersection F of V with the plane L: {{w,w,): w, = w,}.

Then Fis a curve written as
F={w: [w|* = 4r,r,B| By(A(1— Re(w)))}

Now we have the following:

Lemma 3.3.

(w: w=e®2/rry /B By(M(1— Re(w)) }- (32)

1. Fis a smooth contour ( diffeomorphic to a circle ) around the origin:

2. q,(—z—‘i;'—) is regular on F*,the interior of F, and continuous on F\J F* .
1

3. a,(%-) converges on F{ F, .
2

4. o= 62(3‘%) — GRew) onF.

5. o{0)= 040,0).

Lemma 3.3 provides the conditions for Riemann-Hilbert boundary value problem with respect to contour
F. In order to clarify the resemblance to our treatment in section 2 , we introduce conformal mapping

f:zeC* — w=j(z)eF+

and its inverse

f_]:weF+ > z=f_1(w)eC'+

such that f0)=0.

Both fand f-! can be canonically given by Theodorson’s procedure (see [9] section 16.8), in which we

must solve an integral equation.

Assuming that we have obtained the conformal mapping f; we proceed to define functions corresponding to
¢,(z) and ¢{z) in observation 2.5. This can be done by choosing

510 o, 52y

and

-1
Zy(2) o 2(1(;2 )

Then we obtain

).

(3.4.1)

(34.2)



Observation 3.5.

1. Z(2)is regular with respect to z on the unit disk C*+ and continuous on C|J C*.
Z{z") is regular on C- and continuous on ClJ C-.

lim Z(z)= 0)0,0).

2 (2)—ZL{z)= G(A Re(f(z))) on the unit circle C.

S

This condition is identical to the combination of (2.2) and (2.3). Thus, we can get integral expressions of
both %, and Z, similar to (2.4).

Proposition 3.6.

zl<z>=3l,;j ORI g+ 00 it <1
{e

=
and
so-ok| LD gi000 i @>1

{eC
Thus, we obtain ¢,(z) and o {z), and then Q,(2,0) and 040,2).

4. Evaluation of waiting time.

Finally, let us analyze the wamnj tu'nc of customers. Because of equations (1.5) and (1.6), it suffices to

Z,
iz, |y and ————— I,..l Without loss of generality, we assume that r, < 7,.

evaluate
dz

From (1.8.1) and (3.4.1),

01(20)= 5{e1(A)+ (0.0} = 3 E0 ™ (2n2)+ 0(0.0) 4.
dQl(Zro)

Since the domain of /! is F*, we can evaluate | =1 by using the integral form shown in

proposition 3.6 if the following condition holds;
Condition 4.2.  2r, is involved in F*.
Therefore, provided with (4.2), we can evaluate E(W)).

The condition (4.2) holds for most of systems; for example , if the service times of queues are constants (
b, and b,), then A(b, + b,) < 2 is a sufficient condition for (4.2).

Remark : If 2, stays out of F*, we cannot get the differential g_Q:iLz,_Ol | =1 from proposition 3.6 directly.
In sucha case, we evaluate it numerically from the Taylor expansion of X ,(z) , whose coefficients can be
calculated from the integral formula given in proposition 3.6.

I
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On the other hand, the analogy of (4.2) fails for any r,, in other words, 2r, always stays out of F. Therefore,
we cannot evaluate F(W,) without calculating the Taylor expansion of Z,(z) in general.

However, if S; = S,, we have the following “pseudo conservation law” (see {11]):

'Ilb§2)+ izbgl) 25+ 1%
A1—-p) A1+ 1)

26

Aby A
}, EW)+ 5 (4.3)

BW,)=

Hence, we can evaluate E(W,) from E(W)) by using (4.3).

Remark. Identity (4.3) does not hold in general if S;# S,.
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