F e AR =AY AT A& 93—4

VAFAY T PY =T & _

FARV—=F 4 VI« VAT A 59—4
(1993. 5. 27

F— ¥ HEBBRAETNOL TV 27 VEAFRICL AERE

wE  EMRE

RS TN

F— ¥ HMBBREFTUNSRL T — 5 R—= R LM~ ADKED DB AEIN 2, KRTIE, TOEFNV
% Smalltalk ¥ A5 A ¥ HLICEBRT 32 FEIROWTENRS, Smalltalk ¥ HWA LWL E T 2R 5 HHEYD
D, TLFABEA V5 72— AOHBIHES L2 2 H5005H 5, Smalltalk IZX W HBOF— ¥ X—A & HET 5
&, MBOMENR-AEHKETAIMEBLUT— ¥ EMMOWHKBEIEL. COBBPEREIET— 5 X— ABEE R
WA AE LB 2 THASRTEY, T S RMBFLEIS LTI DATh D, He OMEIZIO 31
OBEBOBMCL Y TP TEL, RFCHBELERMNERT,

Realization of Data-Knowledge Codrdination Model by an
Object-Oriented Based Method

Zhiyong PENG  Yahiko KAMBAYASHI

Faculty of Engineering Kyoto University
Sakyo, Kyoto 606, Japan

Data-knowledge coordination model[ CHEN93] is suitable for integrating databases(DBs) and knowledge-bases
(I<Bs) under distributed environment. In this paper, we will discuss an implementation method of such a model
using an typical object-oriented programming environment - Smalltalk-80. Multiple DBs and KBs are integrated by
Smalltalk-80. Interpretive nature of Smalltalk-80 is utilized to realize dynamic links among multiple DBs and KBs.
Through these links, data and knowledge in multiply underlying DBs and KBs can be imported into Smalltalk-80
dynamically and selectively according to the problem to be solved. Related data and knowledge are integrated
and coordinated through multiply hierarchies constructed in Smalltalk-80. Feasibility of this approach is shown by
using a simple implementation example.



1 Introduction

Coordination of data and knowledge is very much impor-
tant to realize advanced applications. Current systems,
however, are usually designed for some predetermined
objectives, and it is very difficult to modify objectives.
In order to share a system by various applications, we
need to develop a flexible data/knowledge system.

For this purpose, a new model called the data- knowl-
edge coordination model[ CHEN92] has been developed,
which is suitable for integrating multiple DBs and KBs
under distributed environment. That is, data are clas-
sified by their properties and knowledge by their sub-
jects, and for combining the participating data objects
and knowledge subjects in each localized problem do-
main, context modules based on the object-oriented data
model are used. Instead of permitting arbitrary links
among data and knowledge, the model permits dynamic
links among three kinds of hierarchies; token object hi-
erarchy for data integration, knowledge module hierar-
chy for subject knowledge integration, and context mod-
ule hierarchy for data-knowledge coordination. Through
such dynamic linking, data an(% knowledge can be prop-
crly tailored and coupled to fit different cooperating con-
texts. Moreover, the cooperation of data and knowledge
are specified abstractly and handled separately from the
independent data and knowledge management.

In this paper, an implementation method for such a
model is discussed. We use an object-oriented program-
ming environment - Smalltalk-80 [GOLD83a] ;GOLD 83b]
to realize these hierarchies and links. More than one hi-
erarchy can be gencrated by Smalltalk-80 by object ref-
crence and inheritance relationship.

We will use a client/server architecture to realize the
model. In a client machine, Smalltalk-80 is used and
each server realized on one or more DB and/or KB sys-
tem. Between a client and a server, a specific protocol
named as linkage protocol is defined for the link manage-
ment and communication. After links are established, a
bilateral pipe is built up between the client and each
server. DBs and/or I{Bs become available in Smalltalk-
80 through the pipe. For imported information specifica-
tion, one class or class hierarchy is created in Smalltalk-
80. The imported information is taken as the instances
of these classes and handled like the conventional objects
in Smalltalk-80.

Based on the above linking mechanism, data from
multiple DBs are imported into Smalltalk-80 as follows.
The classes for the imported data are regarded as vir-
tual classes, of which instances are considered to be
a view of the imported data. As a view, the imported
data values are not replicated and they are manipulated
in Smalltalk-80 through methods defined in the virtual
classes. For identifying data, we introduce data identi-
fiers which are different from object identifiers (if they
cxist)in each underlying DB. Knowledge from multiple
IKBs are also grouped in term of subjects in Smalltalk-80.
For cach subject knowledge, we define a subject class
of which instance is regarded as an integrated view of the
knowledge with the same subject from multiple IBs. Its
instance variables as slots can be filled by the impor-
tation facts that are involved in the reasoning based on
the subject knowledge, while methods as seripts are used
for triggering the reasoning mechanism provided by the
linked underlying KB. In this way, the imported data
and knowledge are able to coordinate for problem solv-
ing. Data are assigned into appropriate slots in sub-
ject knowledge, and then reasoning mechanisms will be
triggered according to the problem solving logic. The
problem solving logic is determined by the application.
For this reason, we introduce context class as problem
solving logic specification, of which instances are used as

context modules for data/knowledge coordination.

All of data, knowledge and context modules are rep-
resented and manipulated as objects in Smalltalk-80, and
therefore they can be organized into many kinds of hi-
crarchies suitable for application requirement. That is,
using complex object and class hierarchy integrates data
and knowledge from multiple DBs and IKBs, and then
coordinates the integrated data/knowledge for solving
problem cooperatively.

2 Data-Knowledge Coordination
Model

Data-knowledge coordination model couples data and
knowledge dynamically and is suitable for integrating
DBs and KBs under distributed environments. In order
to reduce the object duplication and migration, the con-
text module(CM) is introduced to realize independent
management and dynamic coupling of data and knowl-
edge under cooperation contexts.

There are the following three kinds of hierarchies
for data integration, knowledge integration and data,
knowledge coordination, respectively, as shown in Fig-
ure 1{CHEN92].

WY

Subject Knowledge Integration

Dat/Knowledge Coordinati

Data Integration

A RN

Figure 1. The data-knowledge coordination model

A. Data Object Hierarchy

Data objects are usually distributed in multiple data
sources. A complex object may be composed progres-
sively from more primitive ones. These component ob-
jects probably have different types and may be stored in
multiple DBs. Data object hierarchy offers an integrated
view to the complex data with conceptually related com-
ponents distributed in multiple underlying DBs.

B. Knowledge Module Hierarchy

There are multiple knowledge sources at various levels
of specificity and applicability. Knowledge can be fallen
into the following three categories:

Database semantics expressing the schema and meth-
ods of a general class.

Subject knowledge scattered in various KBs and
can be applied to the data objects from multiple partic-
ipating classes.

Context knowledge specifying how to cooperate
the data objects and subject knowledge involved in a
specific problem domain or context.

Database semantics for each database are stored in
database parts. Context knowledge are involved in con-
text modules and become an integral part of the context



text

module hierarchy. Only subject knowledge are handled
in the knowledge modules. In order to utilize the knowl-
edge scattered in multiple underlying I{Bs effectively, it
is important to group them.

As discussed above, knowledge are grouped in terms
of subjects. That is, knowledge localized to a subject is
grouped into a knowledge module(IXM). A I(M can be re-
garded as an integrated view of knowledge from multiple
underlying I{Bs. They can be shared, reused and lever-
aged by organizing multiple hierarchies. There are three
kinds of KM hierarchies: generalization, abstraction and
composition.

C. Context Module Hierarchy

Context module (CM) provides a localized and dy-
namic data/knowledge coupling environment. A CM im-
ports participating objects and subject knowledge from
multiple DBs and KBs. It is defined in a specific prob-
lem domain, either application or management oriented,
by linking multi-source participating data and knowledge
dynamically and providing support to their cooperation.
For example, a federatc DB/IKB server can be specified
by a CM. Like the knowledge module hierarchies, CMs
are also treated as objects and organized into compo-
sition, generalization and abstraction hierarchies so that
they can be inherited, combined, shared and reused. Fur-
thermore, maintaining multiple CM hierarchies can pro-
vide more feasibility for problem solving.

Major advantages of the data-knowledge coordination
model are as follows:

Independence: Independent update of data and
knowledge is possible.

Dynamic modification: Linkage between data and
knowledge can be determined dynamically according to
the application requirements.

Cooperation: It can realize a system consisting of
multiple underlying DBs and KBs working cooperatively.

3 Implementation of the Model
Using Smalltalk-80

Realization of coordination environment is the most im-
portant factor to develop application systems suitable for
the data-knowledge coordination model. Such an envi-
ronment should have dynamic linking capability for mul-
tiple underlying DBs and I{Bs, in which the imported
data and knowledge can be integrated and coordinated
through multiple hierarchies.

In order to examine feasibility of the model, we have
developed a system utilizing Smalltalk-80. Smalltalk-80
is selected by the following reasons:

1) Fully object-oriented language

oth data and knowledge can be represented and ma-
nipulated as objects[BANS7|[FUJI90 E())Tlsgl].Smalltalk-
80 system is fully object-oriented. Basic concepts such
as objects, methods, classes, messages, instances are per-
vasive and applied uniformly in it. It enables developers
to take advantage of object-oriented capabilities, such
as inheritance, polymorphism and éncapsulation. There-
fore, it is a good integration environment for data and
knowledge from multiple underlying DBs and KBs.

(2) Programming environment

As a programming environment, it has various power-
ful development tools, including browser, editor, debug-
ger, decomplier etc., which are highly integrated with
the smalltalk language so that user can code without in-
depth knowledge of programming language. It also pro-
vides a reusable application framework and has incorpo-
rated mature class libraries consisting of 400 classes and
7000 methods. The application framework assists devel-
opers to generate application module to tie the interface

and application logic together. It is completely object-
oriented, which cnables developers to reuse not only in-
terface but the application logic that defines the appli-
cation. Applications can be reused individually or as a
part of another application. Reusable application frame-
work facilitate easier application maintenance, enhance
future development efforts, and ensure high-quality ap-
plication. This framework is suitable for implementing
context modules in data-knowledge coordination model.

3) User friendly interface

raphical Interface Builder provided by Smalltalk-80
enables developers to create GUIs quickly with a point-
and-click "palette” and ”canvas”. A standard interface
layout, or canvas, is automatically generated'for the de-
velopers to begin work. Customized canvases may also
be designed and stored within Smalltalk-80. Developers
use the palette and choose from a wide array of layout
tools to design the interface. These tools include a menu
builder, icon painter and color tool. This facilities high-
quality application development.

(4) Triggering mechanism to be used for client/
server architecture.

Smalltalk-80 has been equipped with the capability
triggering external process. It has class ExternalPro-
cess of which subclass, such as class UnixProcess, pro-
vides a reference to an external process at specified op-
erating system environment (for example, a Unix OS).
Its instances are created through primitives( interface is
knowledgeable in host operating system) which "fork&
exec” new processes as children of the running Smalitalk.
After creating one, the main interesting thing to do with
an external process is to communicate with it, by send-
ing request, waiting for completion and observing its re-
turned status. The method pipeConnectionFor: aName
arguments: startupArguments setProcessDescriptor:
pdBlock, along with its variants, is used for such a pur-
pose, which starts a new job on the program called aName,

assing arguments startupArguments and setting up pipes
?oue communication way between external processes) to
the new job. Such an open structure allows developers
to combine dynamically the power of multiple underlying
DBs and KBs with object-oriented programming technol-
ogy for client/server applications.

Using the capabilities shown above, multiple under-
lying DBs and/ or I{Bs can be mediated easily by linking
them with Smalltalk-80 system based on a client/server
architecture. Smalltalk-80 is taken as a client and one
server is designed for one or more DBs and/or KBs. Be-
tween a client and a server, a specific protocol named
as linkage protocol is defined for link management and
communication. Linkage protocol is bilateral and deter-
mined by application characteristics. At the client side,
a sole class or class hierarchy is defined, which can be
regarded as view of the linked DBs and /or KBs. As in-
stances of such a class, data or knowledge in the linked
DB or KB become available in the Smalltalk-80. The
methods in the class, which can be invoked similar to
conventional Smalltalk methods, primarily provide link
management, data/knowledge query, update and manip-
ulation. On the other hand, each server is passive and
triggered by invoking the methods defined in the above
class(es). It primarily provides information service for
an application in Smalltalk-80.

[Example 1] Suppose an application in Smalltalk-80
would ask some ONTOS database tutorialDB whether
there exists some data in it. The data is stored as an
instance of the class Thing in tutorialDB. The links for
such requirement is created as shown in Figure 2. First,
a class ViewForDatabase in Smalltalk-80 is created. In
this class, three class variables named Connection, Proc
and Cmd are defined for storing the argument informa-
tion necessary for controlling the server. In addition,



an instance variable datalD is defined for identifying the
imported data from tutorialDB. The methods, including
openLink, fetch, put:, closeLink and query:, are imple-
mented in Smalltalk language. A specific server is devel-
oped in C++ based on tutorialDB[ONTOS], which pro-
vides the requested information service. It is triggered
by the method openLink, then peers query requests from
Smalltalk-80, queries data in tutorialDB accordingly; it
returns result to Smalltalk-80; finally, it is terminated by
the method closeLink.

Object subclass:  #ViewForDatabase
class variable name: ’Connection Proc Cmd’
instance variable name: 'datalD’
pool dictionary:
category: 'Ontos’
class methods:
openLink
Connection:= UnixProcess pipeConnectionFor: "rsh’
arguments:#(’flute’ 'askOntos')

setProcessDescriptor:[ :pd | Proc:= pd
Cmd:= Connection read AppendStream.

fetch

ACmd nextHunk.

put: aString

Cmd nextPutAll: aString; cr; commit.
closeLink '
self put:’stop’. A
Cmd close. \\

Proc relcase. AN
query: aThing N

Smalltalk-80

! re(ply I

self openLink.

self put:aThing.

reply:= self fetch.

(reply="0K") ifTrue:[ Atrue ]
ifFalse:{ Afalse }.

server

#include <stream.h> g o e —

#include <stdio.h>

#include <string.h>

#include <Database.h>

#include "Thing.h" T
main() / Scrver; askOntos.C DB

{char request{20];

OC-open("tutorialDB"); // Open the logical database tutorialDB

OC-transactionStart(); //Start a transaction

cin>>request;

while(stremp(request, “stop”)!=0)

{ Thing* aThing = (Thing* ) OC~lookup(request); //Query Ontos
if(aThing != Null) cout<<"ok" else cout<<“no"; // Answer query result
cin>>request; )
OC-uansactionCommit(); //Commit the transaction

) OC-close(); //Close the database

Figure 2. Dynamic link between Smalltalk—80 and the underlying DB and KB

The linkage protocol is also responsible for the format
conversion between Smalltalk-80 and the DBs and/or
IKBs. The above example is only concerned with string
format conversion between Smalltalk and C++, which
has already been provided by Smalltalk-80. If the more
complex format conversion is required, the linkage proto-
col should be extended with the more complex conversion
capabilities based on the owned stting format conversion.
For example, floating numbers possibly in different preci-
sion can be communicated between two systems by con-
verting them into strings at first, then transferring them
as strings, and finally compiling them into the available
format.

The links between Smalltalk-80 and multiple under-
lying DBs as well as KBs are depending on application
requirements as shown in Figure 3. For different ap-

plications, we may have different linking combinations.
Through these links, data and knowledge can be em-
ployed in Smalltalk-80 selectively. The related data and
knowledge from multiple underlying DBs and KBs will
appear in the same form as the conventional objects in
the Smalltalk-80 while their syntax mismatches are fil-
tered by the corresponding linkage protocols. Further-
more, their scmantic heterogeneity will be tuned through
relationships and constraints defined in the correspond-
ing classes or the multiple hierarchies constructed in the
Smalltalk-80. These integrated data and knowledge are
coordinated dynamically in the context module objects.

KB3

KB1

KB4

Smalltalk

Figure 3. Realization of the data-knowledge coordination model

4 Integration of Data from Mul-
tiple Underlying DBs

As shown in Section 3, data distributed in multiple un-
derlying DBs can be imported into Smalltalk-80 by build-
ing one-one correspondence between one data item in DB
and an object in Smalltalk-80, where data are managed
by the underlying DBs and manipulated as objects in
Smalltalk-80. An object is regarded as a view of its cor-
responding data whose actual values are stored in the
underlying DB and data are manipulated through meth-
ods that are implemented by the linkage protocol. Thus,
the actual data can be updated independently within the
underlying DB, and update effect can be reflected into
Smalltalk-80 immediately through methods.

For such a purpose, Smalltalk-80 provides an unique
identifier for each importation data. The data identifier
provided by a server can be different from the object
identifier provided by Smalltalk-80. The former is used
by the server for viewing data in DB while the later for
manipulating the corresponding data through methods
defined in Smalltalk-80.

Although the identifying mechanisms are realized in-
dependently, the data with the same data identifiers from
different underlying DBs can be differentiated becausc
they are assigned with different object identifiers in Small
talk-80. For object-oriented database(OODB), its identi-
fying mechanism can be employed directly by the server.
However, the other kind of databases such as relational
database (RDB) should be provided with some mecha-
nism through which the imported data from it can be
assigned an unique data identifier. Such a mechanism
is developed as a part of server and its realization com-
pletely depends on the underlying DB.



Using data identifying mechanism, an underlying DB
is linked to Smalltalk-80 by defining a class or class hier-
archy in Smalltalk-80 and implementing a server based
on the underlying DB. The class(es) is named as vir-
tual class(es) and the imported data are represented as
its instances(virtual objects). In the virtual class, only
one instance variable is defined for storing the imported
data identifier. The stored data identifier 1s provided by
the identifying mechanism and with it the actual data
within the underlying DB can be manipulated through
the methods defined in the virtual class. The one-one
correspondence between the imported data and virtual
object is shown in Figure 4.

P
Object
@ Smalitalk-80
QEmployee
- — ’7\1\
- - 34 | | age(datalD)

_igiqr"’;ﬂ" {
3 datalD Server
T

|

virtual object

DB
| “Jack"

34| "London"{ 492962911 |

Figure 4. Correspondence between data in DB and object in Smalltalk-80

Data identifier is completely localized with the un-
derlying DB. When its corresponding data is required
by the application, it will be imported into Smalltalk-80
and correlated an object of the class designated by the
application. An instance of that class is created and the
data identifier is stored in the instance variable of that
newly created object. Thus, the data identifier and ob-
ject identifier are correlated according to the importation
request. When the data has been handled and become
unnecessary, the correlated objeet will expire and the
data identifier will discorrelated with the expired object
identifier.

For each class, the data identifier can correlated only
one object. In order to avoid duplicating the same im-
ported data with different virtual objects of the same
class, a virtual object dictionary is defined for each vir-
tual class. Depending on such a dictionary, the data will
be imported in the following way. The imported data
is first assigned an unique identifier by server; and then
the dictionary is searched to see whether there has been
a virtual object with the same data identifier. If there
exists, it shows that this data has already been imported
as an instance of that class. The found object should be
picked up and manipulated as the view of the imported
data. Otherwise, a new virtual object will be created
and put into the dictionary. Thus, the one-one corre-
spondence between the imported data and virtual object
of the same class can be guaranteed in Smalltalk-80.

Because the same data can be viewed differently by
different applications, namely as an object of different
classes. The above importation method only limit the
same data to correlate with just one instance of the same
class rather than multiple instances of different classes.
Therefore, data identifier can be correlated with more
than one instances of different classes. Thus the same

data can be used by different applications as instances of
different classes simultaneously.

In order to manipulate the imported data, some ac-
cess methods must be implemented through the linkage
protocol. They are defined in the virtual class and in-
voked similar to the conventional methods in Smalltalk-
80, namely through passing message to object. As a
simple example, suppose an employee record (name:Jack
age:34 address:London telephone:492962911)in some un-
derlying DB might be manipulated by some application.
In the above process, the data would be imported into
Smalltalk-80 as shown in the Figure 4. In order to access
its attributes, a pair of methods have been defined for
each one, such as age and age:, which can be viewed as
reading and writing actions within the underlying DB.
Issuing age means to obtain age attribute value 34 from
the underlying DB while issuing age: to update it. These
actions are included in the transaction triggered by the
server so that they can’t violate with the other processing
processes depending on local concurrency control mech-
anism provided by the underlying DB.

All the involved data from multiply underlying DBs
are imported as virtual objects in the above way. There-
fore, utilizing Smalltalk-80, these data can be extended
and integrated in the following three basic methods:

1) Extending data with additional attribute

The attributes of data from an underlying DB may
be not sufficient for the application requirement. Con-
sider the above example again. Suppose the application
would give all involved employee some privilege for us-
ing resources in company. For this situation, we can
create a new class PriviledgedEmployee as a subclass of
virtual class Employee(Figure 5), in which an additional
instance variable is defined to hold this new attribute
value. Such an attribute is only application-oriented and
without any effect on the actual data in the underlying
DB. The value stored in the additional instance variable
may be an object of a basic class or other virtual class.

Smalltalk-80
"London" : : address(dataID)
~ ~
Server ~ ;.d.‘.]ﬁc.sf -
datalD | Lendon”

priviledge +———=[ 10_]

DB _
[ Jack" | 34]"London7492962911

Figure 5. Extend data with additional attribute

2) Combining data from multiple underlying

S B

The attributes of the same entity may be dispersed
in different underlying DBs. For example, a school has
components for "school map” and "school description”
stored in different underlying DBs. The data in these
two underlying DBs can be imported through two virtual
classes defined in Smalltalk-80. In order to employ the



imported data from different underlying DBs as an inte-
grated data, we can create a new class with two instance
variables which reference the component data(Figure 6).
In this combination class, methods can be used to guar-
antee the global consistency among local data, by prop-
agating the effect of data modification.

SchoolMap
|
|

Smalltalk-80

SchoolDescription

[ / | description(
schoolMap| | [mapID schoolt}/scription | | descriptionD)
1
/
/ Server

{ | map(maplD)

descriptionID

DB

School Description

schoolDescription
—————— -

schoolMap
il o — o s

Figure 6. Composition data from different DBs

3) Building hierarchy for data from multiple
underlying DBs .

Smalltalk-80

" obiear )

VirtualClasses
Person

person(persontD) | |
| |personData

Server Student

]

Ve | Istudeny

yd studentID)
7
Vs -
studentData
studentData

7/
Person 4

Ve
s
Vd
e

_person(personiD) |

personlD
studentID

Figure 7. Data hierarchy from different DBs

Some relationship such as the generalization - special-
ization may exist between data from multiple underlying
DBs. For example, the general personal data(name, age,
birth place, etc.) can be obtained from DB in public
office while the special -data as student( name, major,
course, score, etc.) from DB in his studying school. If
some application requires both of these data, they need

to be imported into Smalltalk-80 simultaneously. Obvi-
ously, student can be regarded as a person with some spe-
cial status. Therefore, the corresponding virtual classes
should be organized into super-sub class hierarchy in
Smalltalk-80, namely Person as superclass and Student
as subclass(Figure 7). Unlike the usual virtual class, Stu-
dent has two data identifiers, one is its own and the other
inherited from Person. Of course, these two data iden-
tifiers should be kept consistent through the methods
defined in Person and Student.

The above basic methods can be combined and used
repeatedly so that data from multiple underlying DBs
can be extended and integrated at higher level. These
data tailoring are completely application-oriented.

5 Integration of Knowledge from
Multiple Underlying KBs

Integrating knowledge from multiple underlying KBs by
Smalltalk-80 is realized by introducing subject class to
define an integrated view of the knowledge. A subject
class consists of slots and scripts, where slots as instance
variables are used for representing importation facts pro-
vided by the underlying DBs and scripts as methods for
triggering reasoning based on knowledge within the un-
derlying KBs. An underlying KB consists of one or more
subjects. On the other hand, knowledge with the same
subject may be scattered in multiple KBs. For each KB,
one or more subject classes are defined in Smalltalk-80
and they are linked in the way discussed in Section 3. In
Smalltalk-80, the subject classes from different I{Bs with
the same subject will be integrated by means of complex
objects. In such a way, knowledge within the linked un-
derlying KBs can be employed by invoking script defined
in subject classes. The script will trigger operations on
the corresponding underlying KB as if some user is utiliz-
ing the KB. Only difference 1s that importation facts are

rovided by slots through linkage protocol rather than

Y a user. .

Smalltalk-80

ﬂuﬂlf—ylﬁ_fm%iﬂtﬂji_ 5
Truc/False | applicant.age .
St A
company.agelimit // -
o7

. . r i
subject knowledge object// ~ oalifying(ap slicant.major,spplicant.age
. company.subject,company.ageLimit)

acéepmblcRalc:= 0
IF applicant.major

match company.subject
THEN acceptableR ptableRatc+1
IF applicant.age <= company.ageLimit

THEN acceptableRate:=acceptableRate+1
IF acceptableRate >=2 THEN True

Figure 8. Cormrespondence between knowledge in KB and object in Smalltalk-80

Subject class is just subject knowledge specification
and should be instantiated by creating an instance and



assigning actual data into its slots when the subject knowl- tions with the same message format is allowed, and thus

edge is involved in some application.

Example 2] Consider the example shown in Figure
8. Suppose an underlying KB, which justifying an ap-
plicant whether can be accepted by some designated
company, has been linked to Smalltalk-80 through sub-
ject class Qualify. Since using the underlying KB re-
quires providing factual data(applicant’s major, age and
company's subject, age limitation), four slots as instance
variables (applicant.major, applicant.age, company. sub-
ject, company.ageLimit) are defined in Qualify for storing
these importation facts. In addition, a script to qualify
methods is implemented to trigger the reasoning based
on rules in the underlying KXB. When a subject knowl-
cdge object instantiated by Qualify has received the mes-
sage qualifying from some application in Smalltalk-80,
the corresponding method in Qualify will be invoked.
The method picks up the factual data stored in slots by
the application and interact with the linked underlying
KB’s server through the linkage protocol. The reasoning
result will be replied to the application through the link.

The above way might make the application employ
knowledge within the underlying KB as if these knowl-
edge would be conventional objects in Smalltalk-80. Like
the imported data, these subject knowledge objects can
be extended and integrated in the following basic meth-
ods:

1) Aggregating subject knowledge from multi-
ple underlying K%s

Like complex data, complex subject knowledge can
also be aggregated from simpler ones. This can be done
by creating a new subject class with several instance vari-
ables which reference the component subject knowledge.
In order to encapsulate component subject knowledge,
some necessary methods are defined in the created sub-
ject class as uniform accessing protocol for all slots and
scripts in component subject class. The example in the
next section will give a detail illustration about such an
aggregating way.

2) Classifying subject knowledge into general-
ization hierarchy

Subject knowledge from multiple underlying IXBs can
be classified according to specialization -generalization
relationship among them. The subject knowledge about
driving a car is viewed as the specialized subject knowl-
edge about driving a vehicle. If both of them are required
to be employed in Smalltalk-80, the super-subclass inher-
iting mechanism provided by Smalltalk-80 enables these
two subject classes to be organized into generalization
hierarchy, namely subject class CarDrive being defined
as a subclass of VehicleDrive. Depending on the hierar-
chy, only slots and scripts special for CarDrive are im-
plemented in it and others are shared by inheriting them
from VehicleDrive.

3) Classifying subject knowledge into abstrac-
tion hierarchy )

Subject knowledge abstraction is an extension to gen-
cralization. The abstraction hierarchies are organized in
the same way as generalization hierarchies. However, in
the abstraction hierarchy, the scripts in the superclass are
based on the more abstract importation facts and knowl-
edge than those in the subclass. For these scripts, instead
of mheriting from the superclass, we have to reimplement
them in the subclass. For example, The script seeDoctor
based on the rule sick(X)—)visit(X,Y)&doctor(Y") can
be viewed as the abstraction of the script with the same
name secDoctor which is based on the rules injury(X)-)
visit(X,Y)&surgeon(Y) and flu(X)-) visit(X,Y) &
ph.ysicianﬂ)"). In the subclass, the script would not be
shared with the superclass and while it be reimplemented
with the latter concrete rules. Smalltalk-80’s dynamic
binding mechanism might ease the realization of such a
hierarchy. In Smalltalk-80, duplicating method defini-

the script for the same objective can be implemented at
different abstraction levels along the path from super-
class to subclass.

In general, the subject knowledge defined in the su-
perclass can be applied at higher levels and in wider
ranges than in the subclass.

6 Data-Knowledge Coordination

As discussed in the previous sections, data from mul-
tiple underlying DBs are imported to Smalltalk-80 as
the instances of virtual classes and integrated by vir-
tual class hierarchies. Knowledge in multiple underlying
KBs, on the other hand, can be employed by sending
script message to the instances of subject classes defined
in Smalltalk-80 and the grouped subject knowledge can
be integrated into subject class hierarchies.

In order to coordinate these integrated data and knowl-
edge, context classes are used in Smalltalk-80. In context
classes, instance variables are defined to reference the re-
lated data and subject knowledge, and methods are used
to implement dynamic logical relationship between data
and subject knowledge. Its instance is referred to as con-
text module and realizes data-knowledge coordination, as
shown in Figure 9.

Smalltalk-80

VirtualClasses

DataFromDB
TER i .
[Semer N\ o
S
3 ) |
/ .-
/ :
—_;;L__ krgowledge d
context module object

Figure 9. Data and knowledge coordination based on context module object

In Smalltalk-80, muitiple context classes might be
created for solving various problems. The same data
and subject knowledge may be involved in multiple con-
text modules. In addition, the involved actual data and
subject knowledge in context module frequently change
along with problem solving progress.

The methods in context class primarily realize con-
text knowledge which are controlling importation and
coordination of data and subject knowledge. Context
knowledge is application oriented and defined in a spe-
cific problem domain. For a complex problem, single con-
text module may be not sufficient and a set of context
modules should be maintained. Like data and subject
knowledge, these context modules can also be.organized
into multiple hierarchies in the following methods:

1) Composing CMs for solving the problem
overriding multiple domains

Assuming that multiple context modules have been
designed in Smalltalk-80 for various problem domains.



If a new problem overriding these problem domains oc-
curs, it can be solved by composing the existing con-
text modules rather than designing one from scratch.
A composition context class is created with several in-
stance variables. Among these instance variables, some
are used to reference the existing component context
modules and the others for additional necessary data and
subject knowledge which are not involved in the com-
ponent context modules. Methods in the composition
context class primarily realize knowledge about coordi-
nation among the existing component CMs, additional
data and knowledge, problem solving logical overriding
multiple domains.

2) Specializing CM for solving the problem in
the more special domain

Solving special problem requires special additional
data and knowledge. It can be done by reusing the corre-
sponding general CM, namely creating a subclass of the
general context class. The subclass inherits all context
knowledge from its superclass, including general data and
knowledge importation, their coordination, and general
problem solving logic. In the subclass, only these are
defined, including its own instance variables for referenc-
ing the involved special data and subject knowledge, and
methods for coordination not only between special data
and subject knowledge but also between special and gen-
eral ones, especial for realizing the more special problem
solving logic.

3) Abstracting CM for handling problem at a
higher level and in a wider range

Unlike generalization, abstracting CM provides more
abstract data and knowledge coordination. In Smalltalk-
80, abstract context class might be created as superclass
and concrete one as subclass. In the subclass, instead of
inheriting from superclass, the definition for the related
data and subject knowledge as well as their coordination
are reimplemented in the more concrete form. The in-
stance variables defined in the superclass are reused in
subclass but they reference data and subject knowledge
with the more concrete representation. Controlling their
importation depends on the problem being abstract or
concrete. In addition, almost all methods for the same
objective are reimplemented with the same invoking way
but applicable at different level and in different range.
This enables some unsolvable problems to become solv-
able at a higher level and in a wider range depending on
‘the dynamic binding mechanism in Smalltalk-80.

The above three basic methods can be used repeat-
cdly and combined, and multiple complex CM hierarchies
can be realized. Through their cooperating, various com-
plex and even some unanticipated problems can be solved
in Smalltalk-80 which mediates multiple underlying DBs
and IXBs dynamically.

7

In this section, a simple implementation example is shown
to illustrate how to develop an application system suit-
able for data-knowledge coordination model. This appli-
cation system provides student with service for finding a
suitable company. It is simple but requires multiple un-
derlying DBs and KBs cooperation.' In general, finding
company for a student should first know data of both
student and company. With these data, whether a stu-
dent can be accepted by some designated company needs
qualifying knowledge. If the student can be qualified as
an employee by that company, he might ask the company
about his salary and then the company requires salary
knowledge to answer him. Finally, the student makes a
decision by comparing salary provided by all acceptable
companies, and of course, the highest is his choice.

As will be seen later, our proposed way is suitable for

An Example.

implementing such an application system with increased
feasibility. These DBs and KBs are linked to Smalltalk-
80, related data and knowledge are integrated for coor-
dination by constructing necessary hierarchies and these
hierarchies may be extended for some unanticipated sit-
uation. This is shown in Figure 10 and the detail expla-
nation will be given as follow. This simple application
system based on Smalltalk-80 has been implemented by
mediating three ONTOS databases and two simulated
production rule based Knowledge bases.

KB1 KB2
~ »
N \
\\ \
Smalltalk Environment \\ \\
\
\ L
\

ContextClasses

@va

/

/ @ // -~ FindCompany
/ 7—LL- / =

’I

| \ \

! \

1 \ N
\ \ ~

Figure 10. An example for data—knowledge coordination

Data integration

The data necessary for the application system are
stored in three ONTOS databases OODB1, OODB2 and
OODB3. The company data within' OODB1 are com-
posed of attributes (string subject; int- ageLimit; basic-
Salary; string address;). In order to make them available
in Smalltalk-80, a virtual class Company is created and
its instance is regarded as the view of the imported com-
pany data. The data identifier stored in the instance
variable CompanyID is provided by OODBI1 based on
the ONTOS’s identifying mechanism{ONTOS].

On the other hand, a corresponding sever based on
OODBL is developed in C++ to perform actual data
manipulation, which is managed and employed by the
methods defined in the virtual class Company. These
methods are realized Through the linkage protocol for
link management(openLink, closeLink), communication
(fetch, put:), data importation(fetchAll, fetchWithCon-
dition:), attribute reading(subject, ageLimit, basicSalary,
address) and attribute writing(subject:, ageLimit:, basic-
Salary:, address:). )

In addition, a dictionary VOdictionary is defined as
one of the Company’s class variables. The dictionary
is stored with all objects corresponding to the imported
company data. If a company data need be manipulated
by the application, its data identifier will be provided by
the server. And then, the VOdictionary is searched in
term of this data identifier. If there is no such object in



it, the virtual class Company will be instantiated by cre-
ating an object as the data’s view and the object should
be put into the VOdictionary.

Sending attribute reading message to the object can
obtain its corresponding attribute value. Sending at-
tribute writing message can update its corresponding at-
tribute value. These operations are included in a trans-
action triggered by the server and therefore can’t cause
any inconsistency state in OODBI1. Besides, data iden-
tifier always keeps unchanged so data in OODB can be
updated independently and also it can be manipulated
in Smalltalk-80 simultancously. )

The data within OODB2 and OODB3 are composed
of attributes (string name; int age) and (string name;
string major; string degree), respectively. They are linked
to Smalltalk-80 in the same way as OODB1. Virtual
classes, which are Person with instance variable personID
and Student with instance variable studentID, are cre-
ated in Smalltalk-80. Corresponding to them, two servers
are implemented based on OODB2 and OODB3. Obvi-
ously, a student can be regarded as a person with some

edge about finding company in our example. For this
reason, they should be composed into a composition sub-
ject knowledge, which is defined by the subject class
CompanyFind. In the composition subject class Compa-
nyFind, two instance variables are defined for referencing
the component subject knowledge Qualify and Salary.
In order to access slots defined by the component
subject class, a pair of methods are implemented for
each component slot. As an example, the method ap-
plicant.age is used to read the corresponding slot value
from the component subject knowledge. Applicant.age:
newValue is to update the slot value in the component
subject knowledge. Since the slot applicant.age is dupli-
cated in Qualify and Salary, the update method should
change the duplicated component slots simultaneously.
Besides, the scripts in Qualify and Salary are abstracted
by the methods in CompanyFind, which delegate the cor-
respondin%)scripts in (Sualify and Salary to tri%ger the
reasoning based on rules in I{B1 and KB2. In this way,
CompanyFind encapsulates Qualify and Salary so that
the knowledge within KB1 and B2 can be employed in

special status. For such a situation, the data from OODB2 Smalltalk-80 as an integrated view.

and OODBS3 should be integrated by organizing them
into a generalization hierarchy, namely taking Student
as a subclass of Person. The integrated data view is an
instance of Student which has its owned data identifier
studentID as the view of data from OODB3 and inherits
another data identifier personID from Person as the view
of data from OODB2(Figure 7).

In order to overcome semantic heterogeneity of data
from OODB2 and OODB3, a dictionary is defined in Stu-
dent to store the equivalence relationship between name
attribute of data from OODB2 and OODB3. In addition,
some necessary methods are implemented to guarantee
the integrated data semantic consistency. In this appli-
cation, suppose their semantic consistency constraint is
that only data with the same or equivalent name from
OODB2 and OODB3 can be integrated.  For example,
when a student data need be imported from OQODB3, a
method is needed to see whether there is a correspond-
ing person data with the same or equivalent name in
OODB2. If there exists, the corresponding person data
should also be imported together with the student data
and then they are integrated as an instance of the class
Student. Otherwise, the required student data is thought
to be incomplete and this importation request should be
rejected.

Knowledge integration

The knowledge within I{B1 are employed to justify
whether a student can be accepted by some designated
company. The judgment requires importation fact about
the major and age of applicant as well as the subject
and age limitation of company. The rules in IXB1 show
that only if the applicant’s major is consistent with the
company’s subject and his age is not greater than the
company’s age limitation, he can be accepted. The link
way between Smalltalk-80 and KB1 has been illustrated
inJExample 2]. In the same way, the knowledge within
KB2 can be employed in Smalltalk-80 by creating an-
other subject class named as Salary and linking IXB2 to
Smalltalk-80 through the subject class.. Different from
KBI, the knowledge within IXB2 are primarily for an-
swering student about his obtainable salary.

In ‘the subject class Salary, three instance variables
named as applicant.age, applicant.degree and company.
basicSalary are defined as slots since the reasoning based
on the rules within I{B2 requires these importation facts,
which include the student’s age, degree as well as the
company’s basic salary. In addition, a method named as
salary is implemented as the script for triggering reason-
ing based on the rules within IKB2.

Both of these two subject knowledge can be regarded
as the component subject knowledge of the subject knowl-

Data and knowledge coordination

Now the related data and knowledge from multiple
underlying DBs and KBs have been integrated based on
Smalltalk-80. It is time to design context module to co-
ordinate them for solving the problem proposed by our
example. For this purpose, a context class FindingCom-
pany is created in Smalltalk-80 as the context module
specification. It has three instance variables which refer-
ence the related data and subject knowledge.

In order to coordinate these data and subject knowl-
edge, the context knowledge are implemented by the
methods defined in FindingCompany. Some of these
methods are for assigning data to the appropriate slots in
subject knowledge. For example, the method for instan-
tiating FindingCompany is used to import related sub-
ject knowledge and data as instances of CompanyFind,
Student and éompany, and couple them accordingly, such
as assigning the age of the student into the applicant age
slot of the subject knowledge about finding company.

The others are primarily for realizing problem solv-
ing logic. In our example, the application system first
let student input his name, then it queries OODB2 and
OODB3 in term of his name. If without any data about
him in OODB2 and OODB3, the system prompts him
correct input or allows him to give up continual try. If not
so, the found data is imported into the working context
module. And then, the context module imports company
data one by one from OODBI1. For each company, the
reasoning based on rules in KB1 is first triggered to jus-
tify whether he can be accepted. If he is returned with
OX, then the reasoning based on rules in KB2 should be
triggered to ask his obtainable salary from that company.
Finally, the reasoning result is stored for the comparison
afterwards. After all of companies have been enumer-
ated in the above way, the final result is shown to the
student. If more than two companies can accept him,
the one that can provide the highest salary is suggested
by the application system.

The context class FindingCompany has achieved the
objective proposed by our example. However, student
may put forward some unanticipated requirements such
as wish to find a suitable company in Kyoto. It is obvi-
ous that this problem can be regarded as more concrete
case of the above one. Therefore, it can be solved by cre-
ating a new context class FindingCompanyInKyoto as
subclass of FindingCompany. In FindingCompanyInKy-
oto, only method about importing company data into
working context module need be reimplemented so that
it only imports the data about companies in Kyoto.

Using dynamic binding mechanism in Smalltalk-80,
once the procedure finding company in Kyoto fails, the



finding procedure can be triggered at the more abstract
level namely FindingCompany. Thus, even if the student
can’t find a suitable company in Kyoto, he may be given
a suggestion that some company in other city is suitable
for him.

If the student wish to find a company in Tokyo, he
can be satisfied by creating another new context class
FindingCompanyInTokyo in the same way as Finding-
CompanyInKyoto. This shows the feasibility of our pro-
posed realization way.

8 Concluding Remarks

In this paper, we have presented an implementation way
of the data-knowledge coordination model. It utilizes
an object-oriented programming environment-Smalltalk-
80 as dynamic coordination environment of data and
knowledge from multiple underlying DBs and KBs, and
emphasizes feasibility of the developed application sys-
tem. In this way, multiple underlying DBs and KBs are
linked to Smalltalk-80 according to application require-
ment. Data and knowledge are imported into and em-
ployed in Smalltalk-80 in the form of data and knowledge
view. They are extended, integrated and coordinated
through constructing multiple hierarchies by using ob-
ject reference and inheritance relationship in Smalltalk-
80. A simple application system has been implemented
in order to illustrate the feasibility of this approach.

Recently, coupling data and knowledge has received
much attention. Several approaches have been proposed
in this research field{ CHEN91a][CHEN91b] [PEDE91} (W
EIS91][ZOBAS87]. Compared with them, utilizing Small
talk-80 as data-knowledge coordination environment can
provide application with the more feasibility. Especially,
identifying data with two different identifiers(data and
object identifiers) will loose the tie (A data belongs to
only one class ), which is one of the main causes of view,
object migration and schema modification problems. In
addition, using virtual class and’ subject class as data
and knowledge view in Smalltalk-80 facilities indepen-
dent management and dynamic link of data and knowl-
edge, which are discounted by the previous methods.

Smalltalk-80 has been employed as an interface of an
object-oriented database. GemStone [BUTT91]. Such an
integration is fixed and can’t support data integration
from multiple underlying databases. Integrating data
from multiple database with virtual view has been dis-
cussed in [MOTRS7], but it is only suitable for data
with the same functional model. Our approach is not
only for heterogeneous data iitegration but also for data-
knowledge coordination from multiple underlying DBs
and KBs. : ’

Since only single inheritance can be supported by
Smalltalk-80, enhancing it with multiple inheritance and
the efficiency of this way are our future research topics.

References

[BAN87] - J. Banerjee et al, Data model Issues for
Object-Oriented Applications. ACM Trans-
action on Office Information Systems, No.1,
3-26, Jan. 1987.

[BUTTS1]: Paul Butterworth, Allen Otis, Jacob Stein,
The GemStone Object Database Manage-
ment System. Communications of the ACM,
Vol.34 No.10, Oct. 1991.

[CHEN91a] Qiming Chen, Yahiko Kambayashi, Nested

sentation. Proc. of the 1991 ACM SIGMOD

International Conference on Management of
Data Denver, May 1991.

[CHEN91b] Qiming Chen, Yahiko Kambayashi, Unify-
ing Data Grouping and Knowledge Group-
ing  through Nested Relational Based
Knowledge Representation. Proc. of the
IEEE Fifth International Computer Soft-
ware & Application Conference Tokyo,
Japan, September 1991.

[CHEN92] Qiming Chen, Yahiko Kambayashi, Coordi-

nation of Data and Knowledge Base Systems

under Distributed Environment, IFIP, DS-

5 Semantics of Interoperable Database Sys-

tems. Lorne, Victoria, Australia, November

16-20 1992.

[FROS86] Richard Frost, Introduction to Knowledge
Base Systems. Collins Professional and

Technical Books 1986.

Shigeru Fujimura, Shoji Tomita, Noboru
Iima and Akira Suzuki, AUK: Shell
for Building Intelligent System Based on
Object-oriented Knowledge Representation
auk. Transaction of Information Processing
Society in Japan, Vol.31 No.1 Jan. 1990.

Goldberg, -Addele and David Robson,
Smalltalk-80: The Language and Implemen-
tation, Addison-Wesley, 1983.

Goldberg, Addele Smalltalk-80: The Inter-
active Programming Environment, Addison-
Wesley, 1983.

Amihai Motro, Superviews: Virtual Integra-
tion of Multiple Databases. IEEE Transac-
tion on Software Engineering, Vol. SE-13,
No. 7, July 1987.

ONTOS Developers Guide.
Allen Otis, A Reference Model for Object

Data Management. Computer Standards &
Interfaces 13 (1991) 19-32 North-Holland.

[FUJI90]

[GOLD$3a]
[GOLDS3b]

[MOTRS7]

[ONTOS]
[0TIS91]

[PEDE91] Pedersen, Cet al, Data and Knowledge
Bases as an. Integral Parts of a Distributed
Object Infrastructure. Proc. of IEEE In-
ternational Workshop on Interoperability of

Multidatabase Systems, 1991.

J. D. Ullman, Principle of Databases and
Knowledge-Based Systems. Vol. 1, Com-
puter Science Press, 1988.

Weishar, D. and L. I{erschberg, An Intelli-
gent Heterogeneous Autonomous Database
Architecture -for Semantic Heterogeneity
Support. Proc. of IEEE International Work-
shop on Interoperability of Multidatabase
Systems, 1991..

A. AL-Zobaidie J.B. Grimson, Expert Sys-
tems and Database Systems: how can they
serve each other?. Expert System, February
1987. Vol. 4, No.1.

[ULLM8S)|

[WEISO1]

[ZOBAST]

Relation Based Database Knowledge Repre-



