7 rv =7k

vr s vay L 8017

F AT 4 TRIEEHBALE 6117
(93 7. 9)

Xy e—VHREEV27OLANTO N ANEROEHAER

L+E#E ZRHES AHRY %HH =

KA ERETEE HHRTEH

HoEL:

7nb:we&tu.#TEZﬁﬁﬁéfnb:»&ﬁ%ﬁ&?%:é?bé.ﬁ%,&%éﬂtﬁﬁ?ﬂ#-ez&
m¢m,imot#~ez7atxﬁ4ykf7us?47%1&3#5?&@«@%&%%?5ﬁﬁﬁ33nrua%
&, BHEhE T barftiict v - VHRCLIAERZESEINILE VWS READS » 12, gk, ROFET
M.g&éﬂtfﬁb:W&ﬁmumﬁéﬁﬁﬁﬂﬁiﬁfakéwﬁﬁwu7»94Aﬁ%@tbmﬁignrnai
mﬁ%&iE#%%$E<WiT5;&ﬁ?%ﬂﬁot

*%XTH&?,iﬁbtﬁg%ﬁiéﬁ—EZ&&#é2Tnﬁzminb:m&ﬁ%ﬁ&?aﬁﬁé&&%ﬁ%?
é.cwﬁﬁfé&ént7UFJW&ﬁuu,fwt—vﬁ%ﬁﬁﬂ?%*ii%%ﬁﬁihmmtﬁat%ﬁw5a
Kﬂ,%@éméntjnr:»&mﬂUT»y4Aﬁ%ﬁtLtu5m'5@%%%5(%%?63&%&%?5.&
%#6&%&?@,7nb:w&ﬁ@ﬁb@éf@ﬁﬁ%ﬂé&ﬁﬁﬁﬁ?ﬁﬁ?6.C@kb.U?wyﬁAﬁmﬂﬁ
EHBRAITFRSIEHTE S,

Automated Synthesis of Two Process Protocol Specifications with Message Collisions
Hirotaka IGARASHI, Hiroyuki ASADA, Yoshiaki KAKUDA and Tohru KIKUNO

Dept. of Information and Computer Sciences
Faculty of Engineering Science

Osaka University, Toyonaka,
Osaka 560, Japan’

Abstract:)

Protocol synthesis is to derive a protocol specification based on a service specification. In the previous methods, if the
service specification includes simultaneous transmission of primitives from a high layer to a low layer through different
service access points, then the derived protocol specification includes protocol errors of unspecified reception caused by
message collisions. Furthermore, the previous protocol synthesis methods do not include efficient procedures to verify
whether execution times along any acyclic sequence of transitions in the synthesized protocol specifications are no more
than a specified bound for realtime communication.

This paper proposes a method for automated synthesis of a protocol specification with two processes from a service
specification described above. Protocol specifications derived from the service specifications by the proposed synthesis
method are free from protocol errors of unspecified receptions due to message collisions. This paper also proposes an
efficient verification method for determining a realtime bound in the synthesized protocal specification. In this method,
all sequences of transitions in the protocol specification are enumerated in a polynomial time. This scheme enables the
efficient verification of the realtime bound.

—123-

1 Introduction

Along with the diversification of communication services
in the Intelligent Network, it is strongly demanded to de-
velop highly dependable and realtime communication pro-
tocols efficiently [5]. The research field to make such pro-
tocols is called “ Protocol Engineering” [1, 2, 6, 7, 8] and
many researchers are engaged in the study of that field.
Protocol engineering contains many kinds of techniques.
Protocol synthesis for design of protocols is to produce such
a protocol specification based on a service specification and
it is one of the most important design techniques to be de-
veloped. .

The principle of protocol synthesis is that a protocol
specification that defines relations on messages between
processes in the low layer is derived from a given service
specification that defines relations on service primitives be-
tween users in a high layer and processes in a low layer. The
interface between these two layers is called Service Access
Poinl(SAP). .

Protocol synthesis methods based upon Finite State Ma-
chine(FSM) model are proposed by Kassem Saleh [7] and
Ming T. Liu et al. [1, 2]. Such methods do not take into
consideration about such a case that two users send prim-
itives simultaneously to processes through different SAPs.
If this case happens by sending messages from process 1
to process 2 and from process 2 to process 1, then a mes-
sage collision occurs between processes 1 and 2. It causes
protocol errors called unspecified receptions.

Figure 1 shows a sequence chart representing a message
collision. A message collision caused by primitives Rel.reql
and C_resp2 is denoted by crossing of two dotted lines.
Message collisions usually occur in real communication pro-
tocols.

Furthermore, the previous protocol synthesis methods
do not include efficient procedures to verify whether exe-

cution times along any acyclic sequence of transitions in
the synthesized protocol specifications are no more than a

specified bound for realtime communication.

To cope with these drawbacks of the previous synthesis
methods, this paper first proposes an automated synthesis
method of a protocol specification which is free from proto-
col errors of unspecified receptions caused by message colli-
sions and next proposes an efficient verification method for
determining whether execution times along any sequence
in the synthesized protocol specification are not beyond a
given realtime bound. In this method, all sequences tran-
sitions in the protocol specification are enumerated in a
polynomial time. This scheme enables the efficient verifi-
cation of the realtime bound. ‘

The organization of the rest of this paper is as follows.
Section 2 gives definitions of service specifications and pro-
tocol specifications and formulates the problems discussed
in this paper. In Section 3, a protocol synthesis method is

proposed, and in Section 4 details of the proposed methods
and correctness of the proposed synthesis methods are de-
scribed. In Section 5, a verification method for determining
a realtime bound in the synthesized protocol specification
is proposed. Finally Section 6 concludes the paper with
future researches.

2 Definitions

2.1 $ervice Specification and Protocol
Specification

A service specification describes the primitive’s execu-
tion sequences between users and processes through SAPs.
In this paper, we assume that the number of processes
is two, and thus the service access points are denoted by
SAP1 and SAP2.

Definition 1

A service specification is modeled by a Finite State
Machine{FSM) <S,,5,,T,,Time,,a> where

e S, is a non-empty finite set of service states (or
simply states).

¥, is a finite set of service primitives (or simply
primitives). A primitive p € I, is characterized
by two attributes: One is direction dir(p) along
which primitive is delivered. dir(p)=] if p is de-
livered from a user to process, and dir(p)=T1 if p
is delivered from a process to a user. The other is
service access point sap(p) through which prim-
itive passes, that is, SAP1 or SAP2. Sap(p)=1
if p is delivered through SAP1, and sap(p)=2 if
pis delivered through SAP2. Thus if primitive
p with dir(p)=| and sap(p)=1, then p is denoted
by pil. I p with dir(p)=T and sap(p)=1, then
pis denoted by p;T. Primitive pp| and pyT are
defined in a similar way. (In the following, we
use the notations p and p; |, pr T, P2 L, P2 T
interchangeably.)

o T, is a partial transition function between service
states (C S, x &, x S,).

e Time, is a partial transition time function of
primitives. Each primitive has a unique execu-
tion time. Transition time is non negative.

e o € S, is an initial service state.

A service specification can be represented by alabeled di-
rected graph. In the graph, a node represents a state in S,,
an edge represents a transition in 7,, and labels attached
to each edge represents a primitive in ¥, and a transition
time. The labels with p | or p T represents a primitive and
the labels with ¢; represents a transition time. If there is a
directed path from a state (let it be u € S,)to another (let

—124—

it be v € S,), then v is said to be reachable from u. For
any (u,p,v) € T,, state u is called an origin state of prim-
itive p, and it is denoted by u = origin(p). A sequence of
transitions (w1, 1, u2),(tz, P2, ¥3),o,(Un, P1, Ungs) from uy
to u,41 in a service specification implies or defines an exe-
cution order of the primitives py, pa, ..., pn. I (u,p,v) € T,
and u is reachable from the initial state, then the primitive
p is said to be executable in the service specification.

Primitives which may cause message collisions are of type
| (that is, p; | and p, |). We assume that priorities are
assigned to such primitives. Priorities are used in Subsec-
tion 4.1 to avoid unspecified receptions due to the message
collisions.

If there exist two transitions (uy,p;,v1) and (ug, pa, vs)
such that u;=u; and sap(p,)=sap(p,), then state u; (and
thus u, also) is called a choice state. If there exist two
transitions (us, ps, vs) and (uq, ps, v4) such that uz=u, and
sap(ps)# sap(ps), then state u; (and thus u, also) is called
a parallel state.

For the explicit description for concurrent execution of
primitives, this paper restricts the service specification as
follows.

Restriction R1 : Any state can be at most one of choice
state and paralle] state, simultaneously. (This means
that each state is a choice state, a parallel state or
other.)

Restriction R2 : For any parallel state u; and any tran-
sitions (u3, p3, v3),(us, ps, v4) from uy, dir(p;) = dir(p,)

Restriction R3 : For any parAalIel state » and each
i(i=1,2), there is the first primitive p with-dir(p)=]
and sap(p)=i whose origin state is reachable from u
and which is followed by p' with sap(p')=7(j # i), and
neither primitives f,- | nor r; 1 exist in anyk sequence
of transitions from u to the origin state of p.

Restriction R4 : There do not exist three parallel states
(let them be z,y and z) satisfying the following condi-
tion: Let two transitions which leave state = be { and
t'. State y is reachable from z through ¢ while state
z is reachable from z through ¢'. However, y is not
reachable from z and vice versa.

Restriction R5 :
tions (uy,py, u2),(uz, P2, ¥3),sees(Uny Prs Uns1) such that
Uny1 = y; for n(> 1) and wu, is not an initial state.

There is no sequence of transi-

R3 and R4 are necessary to easily find primitives which
cause message collisions and to avoid unexpected concur-
rent execution of primitives, respectively. R5 is necessary
for verification of realtime bound of a synthesized protocol
from a given service specification. An example of the ser-
vice specification is shown in Figure 2. In this figure, an

oval represents a service state, an arrow represents a tran-
sition between states. Labels with p T and p | represent
primitives while labels with 7; represent transition times.
The state drawn by bold line is an initial state.

Projection (to be defined in Definition 2) is used for di-
viding a sexrvice specification into two service specifications
with respect to SAP1 and SAP2. In the projection, service
primitives that do not contribute to SAP1 and SAP2 are
substituted with a primitive ¢, respectively. The primitive
€ is a nyll primitive that causes no message sending.

Definition 2

For a given service specification <S,,%,,T,,Time,, 0>,
if there exists a new service specification

<&\ BT Time',0'> salisfying the following con-
ditions (1) through (5), then the service spec-
ification <S5, T",Time’,0’> is called a projec-
tion with respect to SAP1 of service specification
<S,,8,,T,,Time,,0>.

(1) §'=S,.

(2) T'={p:pel, sapp) =1} u{e}

(3) If (u,p,v) € To and p= plT or pll) then (u,p, v)
€ T'. On the other hand if (u,p,v) € T, and
p = pal or pal, then (u,e;v) € T'.

(4) I (u,p,v) € T, and sap(p) = 1,then Time'(p) =
Time,(p). Otherwise T'ime'(p) is undefined

(6) o' =0. '

The projection with respect to SAP2 of a service specifi-
cation is also defined in a similar way. The projection with
respect to SAP1(SAP2) of a given service specification is
simply called by SAP1(SAP2) service specification (of the
given service specification).

Definition 3 For a given service spec-
~ ification <S,,Z,,T,,0>, if there exist two transitions
(u,p,v) and («', ¢, v') (€ T.) satisfying the following
conditions C1 through C3 (See Figure 4), then these
two transitions are said to have a possibility of Mes-
sage Collision (MC). Additionally, we simply'call two
primitives p and p’ as MC primitives.

Condition C1 : Two primitives p and p' are p = p;|
and p' = p}| (i # j). Additionally there exists at
least one transition (v,g,z) with sap(¢)=j, and
(v, ¢,) with sap(g)=i.

Condition C2 : There exists a parallel state (let it
be w in Figure 4), from which two transitions
labeled by y = y; | and ' = y5 L (i # 7) leave.

Condition C3 : Both states « and u' of primitives
are reachable from w. Additionally, no primi-
tives ¢’s with sap(g)=j and ¢ = ¢ | exist between

—125—

states w and u. Similarly no primitives r’s with
sap(r)=i and r = r | exist between states w and
u'.
Condition C1 means that both directions for primitives
p and p' are from a user to a process, that potentially cause
a message from process i to process j and a message from
process j to process i, respectively. Condition C2 means
that primitives y and y' are concurrently executable if w is
reachable from the initial state. Condition C3 means that
after primitives y and y’ are delivered through SAP; and
SAP;, primitives p and p’ are delivered through SAP; and
SAP;, respectively. Thus, these Conditions C1 through
C3 mean primitives p and p’ can be concurrently executed.
Note that primitives y and y’ are not MC primitives since y
and y' do not satisfy Condition C1. C_resp2] and Rel reql]
at state 3 in Figure 2 are examples of MC primitives.

Definition 4

A protocol specification is defined as a five-tuple
< (Slp: S?p)» (EIP) E?p)v (TlP’ TﬁP))
(Timey,, Timea,), (015, 02p) > Where

e Sy, and S, are non-empty finite sets of protocel
states (or simply states).

T, and I, are finite sets of protocol messages
{or simply messages) and service primitives of
Definition 1. The protocol messages !x and 7x
in I, and X,, represent sending a message x
and receiving a message x, respectively. On the
other hand, service primitives in I, and I, are
characterized by service access points only. (Thus
symbols | and 1 representing directions are omit-

ted.)

Tlp (c sly X Elp X Slp) and Ty (c S2p X Ezp
X Sg,) are partial transition functions between
protocol states. :

Time,;, and Timey, are transition time functions
of messages and primitives in I,, and Iy, re-
spectively.

01p (€ Sip) and g, (€ Sz,) are the initial protocol
states. ’

Based on the protocol specification, the proto-
col specifications for process 1 and process 2 are
defined by < Sy,)jl,,Tl,,,Time;,,m, > and <
Sag, Dop, Tap, Timeog,, 05, >, respectively. We assume
that communication links between two processes are
modeled by two FIFO queues: the one is from pro-
cess 1 to process 2 and the other is from process 2 to
process 1.

At the initial states of processes 1 and 2, the FIFO

queues are empty. If process 1 sends a protocol mes-
sage x to process 2 according to Ti,, then x is added

into the bottom of the FIFO queue from process 1 to
process 2. When x is on the top of FIFO queue, and
(u,7x,v) is in T3, for a current state u of process 2,
then we say x can be received at the state u. Next, if
process 2 receives a message x from process 1, then x
is deleted from the top of FIFO queue from process 1
to process 2.

A protocol specification can also be represented by a
similar labeled directed graph as the service specification.
An exanllple of the protocol specification is shown in Figure
3. In this figure, an oval represents a process state, and
an arrow represents a transition. Each label of an arrow
represents a protocol message or a service primitive. In
process 1 and process 2, both states drawn by bold line are
initial states.

Definition 5

" Consider a case that message x that is sent by process
1is on the top of FIFO queue from process 1 to pro-
cess 2, and a current state of process 2 is state u. If
there does not any (v/,?x, v) in Ty, for any v € S,, and
any paths from state u to state «' which only includes
(a,1,b)s in Ty, where [is a primitive or transmission of
a message, then we say that an unspecified reception
with respect to x occurs at process 2. Similarly the un-
specified reception at process 1 is defined by changing
process 1, process 2, Ty, and Sy, to process 2, process
1, Ti, and S}, respectively.

2.2 Protocol Synthesis Problem and Re-
altimeliness Verification Problem

This paper proposes two methods for solving the follow-
ing problems: Protocol Synthesis Problem and Realtimeli-
ness Verification Problem.

Protocol Synthesis problem (called PS problem) to be
solved in this paper is formally defined as follows:

Input : A service specification 8=<S5,,X,, T,,Time, 0>
with Restrictions R1, R2, R3, R4 and RS, and priori-
ties assigned to primitives p’s with dir(p)=|.

Output : A protocol specification which satisfies Condi-
tions P1 and P2.

Condition P1 : Execution order of primitives given in
the service specification S is kept in the protocol spec-
ification P.

Condition P2 : No unspecified reception caused by mes-
sage collisions occurs in the protocol.

The previous protocol synthesis methods[1, 2, 7] could
not assure Condition P2, if a service specification with

—126—

MC primitives is given. That is, a protocol specification
derived from the service specification includes unspecified
receptions.

The outline of proof that a protocol specification synthe-
sized by the proposed method satisfies Conditions P1 and
P2 is described in Section 4.2.

Realtimeliness Verification problem (called RV problem)
to be solved in this paper is formally defined as follows:

Input : A service specification S=<S,,X,, T,,Time,,0>,
a protocol specification synthesized by the proposed
method which solves the PS problem, transfer times
to deliver a message between two processes, and a re-
altime bound of the protocol specification.

Output : Whether all execution times for sequences of
transitions in the synthesized protocol specification are
within the given realtime bound (yes/no) and the max-
imum execution time for all the sequences.

If yes is outputted, then it is guaranteed in the syn-
thesized protocol specification that execution time for any
sequence of transitions is not beyond the given realtime
bound.

3 Protocol Synthesis Method

The proposed method to derive a protocol specification
P consists of the following four steps.

Stepl : In order to avoid unspecified receptions due to
message collisions, add some transitions to T, in a
service specification S by using priorities assigned to
primitives.

Step2 : Obtain SAP1 and SAP2 service specifications by
applying projection in Definition 2 to a service speci-
fication refined at Step 1.

Step3 : Construct a protocol specification by applying
transition synthesis rules (to be shown in Table 1) to
SAP1 and SAP2 service specifications.

Step4 : Remove ¢ transitions from the protocol specifica-
tion [4].

4 Details of Synthesis Method

4.1 Refinement of Service Specification

In the previous methods[1, 2, 7], it is assumed that MC
primitives never exist in the service specification. If MC
primitives are included in the service specification, message
collisions may occur in a sequence of the protocol specifi-
cation, and thus they cause unspecified receptions.

A concrete method to add some transitions to the ser-
vice specification S in Stepl is described in this subsec-
tion. Though some transitions are added to the service

specification S, execution order of primitives in the service
specification is kept in the derived protocol specification P.
Since priorities are necessary when adding the transitions,
we assume that priorities are given by protocol designers
for primitives which may cause message collisions.

As shown in the input of the PS problem, priorities are
assigned to primitives p’s with dir(p)=|. Based on this,
priorities must be assigned to primitives in each sequence.
Before describing this assignment, some definitions are nec-
essary. Choice states and parallel state are called branch
states, a state which has more than one incoming transi-
tion is called join state and a state which has no outgoing
transition is called final state.

Assignment of priorities to primitives in each sequence
is performed as follows. (1) Set current state be a branch
state which is reachable from an initial state. (2) To prim-
itives in each sequence from the current state to most close
another branch states, an initial state, a final state or a
Join states, assign the priority of the maximum of primi-
tive p with dir(p)=] in that sequence. (3) Compare the
maximum priority assigned to primitives in sequences en-
tering the current state and maximum priority assigned to
primitives in sequences leaving the current state, and re-
assign the larger one to primitives in sequences to which
is smaller are assigned. (4) Repeat (1), (2) and (3) for all
branch states in a breadth first search order.

The real protocol specifications are usually designed to
deal with message collisions, such that a primitive which
is followed by some sequences is executed prior to other
primitives which are not followed. For exa.fnple, primitives
with respect to “release of communication path” are given
higher priority than those with respect to “connection of
communication path”.

In Figure 1, a sequence Relreql, Relind2, Rel resp2
and Rel.confl represents “release of communication path”
and a sequence C_reql, C.ind2, C_resp2 and C.confl repre-
sents “connection of communication path”. Since Relreql
is given higher priority than C_resp2, when message colli-
sion occurs in Figure 1, Rel_reql is followed by Rel.ind2,
Rel resp2 and Rel confl, while C_resp2 is not followed by
C_confl.

Conditions for finding MC primitives are already given
in Definition 3 and are explained using Figure 4. Stepl is
explained using Figure 4. In Figure 4, p;| and p}|(i # j)
are MC. primitives. There exist two transitions (s, pi L,t)
which is followed by (t,r”, z) with sap(r")=i, and (s, Pl
;') which is followed by (¢, z') with sap(r”)=j. The
primitive p} | represents the first primitive p” such that
sap(p")=j and dir(p”)=| and that appears after p; |. Sim-
ilarly, the primitive p! | represents the first primitive "
such that sap(p™)=i and dir(p")=| and that appears after
75 |. Primitives ¢” and ¢'s’ attribute are the same to those
of p” and p", respectively, but they are the first primitives

—127—

after the initial state.

Stepl is applied to each pair of MC primitives p;| and
P51 (See Figure 4), and application of this step is further
divided into the following two cases, based on redefined
priorities of two primitives. :

o Case 1(Priority of p;| is higher than that of p|. Note
that there is no p;| in the path from w to u’ because
of Condition C3 of Definition 3.)(See Figure 4)

For each state m only such that mis in paths from v’ to
origin(p! |)s and that there is no transitions (m,p; |
,m') for any state m/, insert a tramsition (m,L;,v).
We say that L; is generated based on p; |. If there is
a transition (m,p; |,m’) for some state m', then no
transition is inserted.

For each state » such that n is in paths from v to
origin(p#1)s and that there is no transitions (n,p} Ln'
) for any state n', insert a transition (n,Lj, n). We
say that L; is generated based on pj |. If there is
a transition (n,p} |,n') for some state n', then no
transition is inserted.

Case 2 (Priorities of p‘l and p!| are the same.)

For each state m1 only such that m1 is in paths from
v' to origin(p!"])s and that there is no transitions
(ml,p; |,m') for any state m', insert a transition
(m1,L;, init) where init is an initial state. We say that
L; is generated based on p; |. If there is a transition
(m1, pi |, m') for some state m’, then no transition is
inserted.

For each state m2 such that m2 is in paths from

init to origin(g?'})s and that there is no transitions

(m2,p; |, m2) for any state m2, insert a transition
(m2,L;,m2). We say that L; is generated based on

pi L If there is & transition (m2,p; |, m2') for some
* state m2’, then no transition is inserted. ‘

For each state, nl such that nl is in paths from v to
origin(p!l)s and that kther‘e is no transitions (n1,p} |
,n') for any state n’, insert a transition (n1,L;, init).
We say that L; is generated based on p; |. If there
is a transition (nl1,p} |, n’) for some state n/, then no
transition is inserted. '

For each state n2 such that n2 is in paths from
init to origin(¢/{)s and that there is no transitions
. (m2,p; |,m2) for any state m2’, insert a transition
(m2,L;, m2). We say that L; is generated based on
P} | If there is a transition (m2,p; 1, m?2') for some
state m?2’, then no transition is inserted.

For the limit of pages, explanation of Step2, Step3 and
Step4 are ommited. Refer to (3] for their details.

4.2 Correctness of Proposed Synthesis
Method

It is shown here that no unspecified receptions caused by
message collisions exist in the synthesized protocol speci-
fication. After Case 1 of Stepl is applied to the service
specification with MC primitives in Figure 4, it is divided
into SAPi and SAP] service specification in at Step2. By
applying transition synthesis rules in Table 1 and removing
€ tra‘nsisions at Stepd, they are finally transformed into a
protocol specification in Figure 5.

As shown in Figure 5, there are three execution sequences
of primitives and messages as shown in the following Case
1 through Case 3, since at state w in processes 1 and 2
only y; and/or ¥} can be executed.

Case 1 : Process i executes y; and p;, and sends message
e. Process j receives message c and there is no message
collision. ’

Case 2 : Process j executes y} and p}, and sends message
d. Process 1 receives message d and there is no message
collision.

Case 3 : Process ¢ executes y; and p; and process j exe-
cutes yJ’- and p-’i, concurrently. As a result, a message"
collision by messages ¢ and d occurs. However, there
are not unspecified receptions because they are surely
received by transitions labeled by ?c and 7d as shown
in Figure 5. Priorities of primitives are reassigned to
the maximum of each sequence, so execution sequences
of each process are always coordinated to the primi-
tives’ sequences with higher priorities. '

As in the Case 3, there are no unspecified reception and
execution order are kept in the protocol specification. Thus
Conditions P1 and P2 are satisfied.

5 Verification of Realtimeliness

5.1 Outline of Veriﬂcatioh

In order to solve the RV problem, in other words, to ver-
ify realtimeliness of the protocol specification synthesized
by Steps 1 to 4, the following method is proposed. It con-
sists of two procedures. o

Procedure 1 : Obtain all sequences of transitions from
an initial state to the initial state or to a final state
included in the synthesized protocol specification.

Procedure 2 : Compute‘ an execution time for each se-
quence obtained in Procedure 1.

The longest time among execution' times'for all the se-
quences is the realtime bound of the synthesized protocol
specification. :

—128—

5.2 Procedure 1

In general, the number of all sequences of transitions
from an initial state to the initial state or a final state
grows exponentially with respect to the size of an arbi-
trary protocol specification because a message sent from
a process can be received at states in many sequences in
another process as shown in Figure 6.

However, since Procedure 1 depends on the proposed
synthesis method, all the sequences of transitions can be
efficiently obtained so that a message sent from a process
can be received at states in at most two sequences as shown
in Section 4.2. For example, in the protocol specification in
Figure 5, three corresponding sequences are obtained (see
Case 1, 2 and 3). In gereral, for each parallel state three
sequence are generated.

If parallel states and choice states exist in a sequence
of the service specification, then the number of generated
sequences in the protocol specification is at most
3 x (the number of parallel states) x n* x (the number
of choice states), which is a polynomial with respect to the
size of the protocol specification. (* n is the maximum
number of outgoing transitions from the choice states)

5.3 Procedure 2

As a subprdblem of the RV problem, the realtimeliness

problem to compute an execution time for each sequence
of transitions in the synthesized protocol specification is
formally defined as follows.

Input : A protocol specification synthesized by Stepl to
Step4, a sequence of transitions obtained in Procedure
1, a transition time for each transition in the sequence,
and transfer times to deliver a message between two
processes. ’

Output : Execution time to ekecu};g all transitions in the
sequence. ‘

It will be shown ‘that this problem.can be reduced into
the following task scheduling problem.

Inpuf : A multiprocessor sys{ém, fasks, execution time of
- each task, and precedence relation on tasks.

Output : Completion time to execute all tasks.

First, a partial order relation on ‘transitions which cor-
responds to the precedences relation of tasks is defined as
follows:. For a sequence of transitions (py, I1, p2),(pa, I2, Pa),
woes(Pry by Pnt1), the following two relations are execution
order constrainis of transitions.

Relation 1 : After transition Ix{1 < h €< n—1) is exe-
. cuted, 1{(2<i < n, h <i)is executed where I, and J;
are primitives and/or messages in the same process

Relation 2 : After transition [j(1 < j € n—1) is ex-
ecuted by sending message m through channel Cj,,
transitions I,(2 < k < n, j < k) is executed by receiv-
ing it.

Next, it is shown that how the realtimeliness problem is
reduced to the task scheduling problem.)

By mapping processes (including channels), transitions
and the partial order relation on transitions into processors,
tasks and the precédence re_laﬁon on tasks, the reduction
is performed. Therefore, execution time of the sequence
of transitions are computed by applying well known task
scheduling algorithms to the realtimeliness problem.

An example of this result is shown below. For a se-
quence of transitions depicted by bold arrows in Figure 3,
a sequence chart representing relations among transitions
and times they take is drawn in Figure 7. In this example,
the execution time is ¢; + t12(a) + t5 + t12(c) + & + 7 +
tm (d) + 5.

6 Conclusions

This paper has proposed two methods. One is a synthe-
sis method of a protocol specification from a given service

" specification for design of dependable and realtime proto-

cols. The other is a verification method based on the-above
result. The characteristics of the synthesis method include
that no unspecified receptions are caused by message colli-

- sions and those of the verification method are that the ver-

ification problem of the synthesized protocol speciﬁéaffbn
is reduced to the task scheduling problem and sequences of
transitions are enumerated in a polynomial time for verifi-
cation based on the synthesis method.

Therefore, more dependable and réﬂtime protocol speci-

. fications are efficiently produceldAb‘*y. this method than those

by the previous synthesis methods {1, 2, 7]. An extension

“of the protocol method to n (>2) processes is now being

studied.

References

(1] Chu, P. M. and Liu,M: T., “Protocol synthesis
in a state transition model,” Proc. COMPSAC’88,
pp.505-512, Oct. 1988.

Chu, P. M. and Liu, M. T., “Synthesizing protocol
specifications from service specifications in the FSM
model,” Proc. Computer Networking Symp. , pp.173-
182, April 1988. '

2

o)

Igarashi, H., Kakuda, Y. and Kikuno, T., “Synthe-
sis of protocol specifications for design of responsive
protocols,” to appear in IEICE Trans. on Informa-
tion and Systems, Nov. 1993.

.
)

[4] Hoperoft, J. E. and Ullman, J. D., “Introduction
to Automata Theory, Language, and Computation,”
Chapter 3, Addision-Wesley, 1979.

[5] Kakuda, Y. and Kikuno, T., “Issues in respon-
sive protocols design,” Proc. of the Second Interna-
tional Workshop on Responsive Computer Systems,
Oct. 1992, to appear in Dependable Computing
and Fault-Tolerant Systems, 7, pp.17-26, Springer-
Verlag, 1993.

[6] Liu, M. T.,“Protocol engineering,” Advances in
Computers, 29, pp.79-195, 1989.

[7] Saleh, K.,“Automatic synthesis of protocol spec-
ifications from service specifications,” Proc. Int'l.
Phoeniz Conference on Computers and Communi-
cations, pp.615-621, March 1991.

(8] Saleh, K. and Probert, R. L., “Synthesis of commu-
nication protocols: Survey and assessment,” IEEE

Trans. on Computers, Vol.40, No.4, pp.468-475,
April 1991.
SAP1 SAP2
C_req:
ROLI&
“Guootlhs
P

Rel_conft aae®®
-l

Figure 2 Example of a service
specification
(x = Rel_rogs})

Figure 1 Sequence chart with
a message collision

Process 2

Figure 3 Example of a protocol specification
{x = Rel_raq1)

i u (i)
¥ &

Figure 4 Explanation for Stepl

—130—

pi If
¢

Ie
" %e

Process i

Process j

Figure 5 Explanation of correctness of synthesis

Process 1

Process 2

Figure 6 Example of sequences in arbitrary
protocol specification

Process1 Process Cu Process Cn Process 2

Figure 7 Example execution sequence

-{ Transiion Rule input Condiion Output

a 218 not inivel state,

. it (D@

B.1 @ M C

A2 St e
(::}—-(:) ol SeElm |

2 o—® O—@

A3 ® "",. i DO

8.3 @ < @ @ 7 @
et &

» ;
o ;
as — o @
8s 0@

* OUT(s2) is a function, it is defined as follows.
In SAPi service specification ,
OUT(s2) = (SAPj(j#i) :if there exists at Jeast one
transition (s2, ¢ ,v).
SAPi otherwise.

Table'1 Transition synthesis rules

