YAFAV T RO T E
ARV —F 4 2T VAT A
(1999. 5. 6)

MobileSocket: Enhanced Socket Library for Application Layer
Continuous Operations

Tadashi OKOSHI!

Yoshito TOBE?

Hideyuki TOKUDA! » ?

!Graduate School of Media and Governance, Keio University
2Keio Research Institute at SFC, Keio University
3Faculty of Environmental Information, Keio University
5322 Endo, Fujisawa, Kanagawa 252, Japan
slash@ht.sfc.keio.ac.jp, tobe@mkg.sfc.keio.ac.jp, hxt@ht.sfc.keio.ac.]jp

We propose “MobileSocket”, a new simple user-level enhanced socket library written in pure-Java.
MobileSocket provides Java applications with application layer mobility and connection continuity
in order to support their continuous operation. Existing Java applications can attain socket-level
mobility and connection continuity without any modification to their source code merely by replacing
Java standard socket class with our MobileSocket. T'wo mechanisms inside the library, Dynamic Socket
Switching (DSS) and Application Layer Window (ALW) provide application layer mobility and connec-
tion continuity without any kernel-level modifications or additional proxy software. In this paper, we
describe design and implementation of MobileSocket and show evaluated results on our systems with

FreeBSD.

1 Introduction

In mobile computing environment, several kinds
of computing entities, such as users, hosts, applica-
tions, or even users’ desktops can “rove” around. By
carrying their own computer, users rove around be-
tween their home, office, and wherever they want to
use it. In such a situation, provision of the contin-
uous working environment for the users is required,
although many of the surrounding environment ele-
ments of the host, such as network address or power
consumption level, can change dynamically.

To provide users with “work continuity” achieved
by the continuous operation framework is the key,
since main purpose of mobile computing is “comput-
ing at anywhere”.

In this paper, we present the “MobileSocket” li-
brary, which is the user-level, pure Java[l]-based, en-
hanced Socket interface library. In order to realize
the “continuous operation” for the users, the Mobile-
Socket library provides both “mobility” and socket-
level “connection continuity” for any Java applica-
tions which use java.net.Socket class as a means
of their Inter Process Communication (IPC).

Internally switching the actual socket connection
used for data transmission, the MobileSocket library
realizes the socket layer mobility, even when a mobile
host is once disconnected from a network and moves
to another network obtaining a different IP address.
Also, MobileSocket provides its byte stream consis-
tency essentially provided TCP protocol semantics
by exploiting the application layer sliding window
inside its library which retain the byte data consis-
tency after the mobile host’s relocation.

MobileSocket realizes both mobility and connec-
tion continuity for Java applications with only user-
level implementation, while other approaches such
as Mobile-IP[2], MSOCKS[3], Mobile TCP Socket[4]
and TCP-R[5] require either kernel modifications or
additional agents. In spite of simplicity, Mobile-
Socket completely realizes the application layer mo-
bility and connection continuity.

In the remainder of this paper, we address our def-
initions of “mobility”, “connection continuity”, and
“continuous operation” in Section 2. Section 3 de-
scribes MobileSocket design and Section 4 describes
MobileSocket mechanism. Then Section 5 presents
the performance evaluation of our implementation,
and Section 6 discusses some related works and func-
tional comparisons. Finally we mention our future
work and conclude this paper in Section 7.

2 Continuous Operation

In this section, we define the notions of “mobil-
ity”, “connection continuity”, and “continuous oper-
ation”, followed by descriptions of our two redirec-
tion schemes, “Explicit Redirection” and “Implicit

Redirection”.

2.1 Mobility

With “mobility”, a mobile host can maintain the
transparent host identifier in network protcol archi-
tecture, even after the host is disconnected from a
network and reconnected to a different network.

With any framework which supports mobility, the
mobile host can be identified transparently from other
hosts in wide area network at a certain layer of the
network structure.

2.2 Connection Continuity

With “continuity”, applications in the mobile host
can retain their activities and can offer their own
services to users, even after the host has moved to a
different network (or even after the applications has
moved to another host in a different network, in the
future).

Specifically with respect to communications among
applications, “connection continuity” means that the
information for applications’ connections is definitely
retained in spite of moving of the host or the appli-
cations themselves.

For instance, TCP-R provides the TCP layer con-
nection continuity in addition to mobility. With TCP-
R, TCP connections between applications can be main-

81—-6

tained and they are able to communicate continu-
ously even if the mobile host has relocated.

2.3 Continuous Operation

We define “continuous operation” as a service that
application can offer to users when it obtains both
“mobility” and “connection continuity”. With either
“mobility” or “connection continuity” applications
in the mobile and the correspondent host can both
identify each other and maintain their connections.

Provision of “mobility” is enough for “continuous
operation” in the cases of using connection-less and
non-reliable communication. Mobile-IP provides not
only “mobility” but “continuity” for applications like
video conferencing, which usually uses UDP/IP in
their communication. But in contrast, “mobility”
does not always imply “continuity” for applications
with reliable circuit communication, such TCP/IP.
For such communications, “continuity” together with
“mobility” is required for “continuous operation.”

There are two issues: connection timeout and byte
stream consistency. MSOCK provides transport layer
“mobility”, but it does not provide any interface for
setting timeout variable or ones for explicit connec-
tion suspending and resuming. It is because MSOCKS
mainly focuses on the “temporary disconnection” from
the network, such as during the roaming in wireless
LAN. It cannot adapt to long period disconnection,
such as ones longer than TCP retransmission time-
out. The other issue, byte stream consistency, is crit-
ical for reliable protocol connection. Protocol char-
acteristic of stream consistency must be maintained
even after the mobile host is relocated.

The provision of “mobility” and “continuity” are
obviously necessary for the accomplishment of “con-
tinuous operation”.

2.4 Implicit and Explicit Redirections

Mainly to realize the connection continuity, there
are two kinds of schemes to achieve the connection
redirection. The one is “Implicit Redirection” and
the other is “Explicit Redirection”.

Having the mobility and connection continuity sup-
port with Implicit Redirection, additional lines of
source code for declaring the connection redirection,
such as “suspend” or “resume” are not necessary in
applications. With TCP-R, for example, all of ordi-
nally TCP applications can acquire the connection
continuity without any modification in their source
code. This scheme seems very effective and use-
ful particularly at the wireless network environment
where temporal disconnections and relocations hap-
pen very often. But also very often, adjustment of
redirection timeout like the retransmit timer in TCP
protocol is the problem. According to the timeout
value, it can be unuseful, and also causes waste of
resources.

On the other hand, exploiting the “Explicit Redi-
rection” scheme, applications at the both ends of
connection can make sure whether the connection
is suspended or it encounters temporal network con-
gestion.

3 MobileSocket Design

In this section, we present the design of Mobile-
Socket in order to accomplish our goal, “Application
Layer Continuous Operation”. To achieve this, we
adopt the following four characteristics to Mobile-
Socket.

3.1 Mobility and connection continuity sup-
port in application layer

MobileSocket achieves the socket-level mobility and
connection continuity with an enhanced socket inter-
face which is independent for the actual socket used
for data communication. Dynamic Socket Switch-
ing (DSS) mechanism and Application Layer Win-
dow (ALW) described in next section support Mo-
bileSocket’s mobility and connection continuity.

3.2 Simple user-level library implementation

MobileSocket is implemented as a user-level library.
In some other related works for mobility and con-
nection continuity, they need modification in kernel
of the mobile host or the correspondent host, Home
Agent and Foreign Agent, or the proxy server. Our
application layer mobility approach needs only user-
level library and does not need any modification in
kernel or any additional software. Using Java lan-
guage, this approach for mobility and connection
continuity can be proved on many Java-compatible
platforms.

3.3 Support of both implicit and explicit redi-
rection operations :

MobileSocket offers both implicit and explicit op-
erations of connection redirection to applications. None
of existing application needs to be modified and be
added optional explicit operation APIs to their source
code, in order to adopt MobileSocket mobility and
connection continuity. On the other hand, applica-
tions can also use explicit redirect operation APIs
which are effective for longer period disconnection of
mobile hosts or cases that application tends to sus-
pend its connection explicitly.

3.4 Adaptation in Applications

MobileSocket has the Java-event-based adaptation
interface for the applications. When once the mobile
host disconnect from network, how can the corre-
spondent host be noticed it? It is obviously neces-
sary to provide applications with certain interface
and up-call mechanism for mobility and connection
continuity.

4 MobileSocket Mechanism

In this section, we present the mechanism of Mo-
bileSocket. We describe MobileSocket state diagram
and Dynamic Socket Switching (DSS) time sequence,
containing the detail of each DSS phase during the
disconnection and reconnection.

4.1 Dynamic Socket Switching (DSS)

Dynamic Socket Switching (DSS) mechanism in-
side the MobileSocket library enables the application
layer mobility and connection continuity. Figure 1
shows the concept of DSS.

Internal Socket Internal Socket

Conn’cuen(z)

After

Figure 1: Concept of DSS

Once a MobileSocket connection is established be-
tween the mobile host and the correspondent host,
applications in both side of the socket can read and
write byte stream each other with one lasting socket
object, even after the mobile host’s relocation. In
contrast, inside the MobileSocket library, the new
socket connections as the actual connection between
both applications is made every after the mobile host’s
relocation, and “switch”ed dynamically to provide
connection continuity for the applications.

4.2 Application Layer Window (ALW)

Application Layer Window (ALW) is a user-level
sliding window implemented in the MobileSocket li-
brary and maintains the stream consistency of the
MobileSocket connection. Figure 2 shows the overview
of ALW. After the mobile host’s reconnection with
the implicit redirection operation, the user data al-
ready written by application can remain in the lost
socket connection between two MobileSocket libraries,
in the buffers of the local protocol stacks, in the net-
work, and in the buffers of protocol stacks in the
remote host. This causes byte stream inconsistency
problem for the MobileSocket connection. ALW guar-
antees the byte stream consistency of the Mobile-
Socket by resending the lost data after the reconnec-
tion.

MobileSocket

MobileSocket ! >
in Receiver

in Sender

ControlSocket

Figure 2: Application Layer Window

4.3 MobileSocket State Transition

Figure 3 shows the state transition of MobileSocket.
There are mainly four states in MobileSocket, “Closed
7, “Established”, “ImplicitlySuspended”, and “Ex-
plicitlySuspended”.

START POINT
Closed

| D

Connected from Client
)

Connected to Server
[

lent))

Called suspend()
Lost IP address (l:nd susPEND_sleN;hLé“)
Called resume()
sreen, || || oo, :
|mplicitly]imelicitResume Phas P hase) } Explicitly }(cie drngton)

Suspended TomMA"Y

I B ImplicliResume Phase)

from MH

Calied closs() (
, or tmedout

¢

Reconnected
(088-mplicitResume Phase) | | chilbd close)
jofe connection)

=

from M1 Called ojoss
SS-ExplicitResuma Phase) or timedoL

received SUSPEND_SIGNAL
(DSS-ExpilchSuspend Phase)

Callad ciose)
(olose connection}

Transition trigger

~————Normal Transitions for CH
~———=—+Norma! Transitions for MH

(action) e Normal Transitions for Client

~————#Notmal Transitiona for Server

Figure 3: MobileSocket State Transition Diagram

At “Closed” state, the MobileSocket connection is
not connected to the remote host. At “Established”
state, the connection between two MobileSocket li-
braries is established and applications at the both
ends can communicate with each other through the
MobileSocket. At “ExplicitlySuspended” state, the
connection between the libraries is disconnected af-
ter the explicit suspend API is called by the appli-
cation. The applications cannot communicate with
each other unless they call resume API of Mobile-
Socket. At “ImplicitlySuspended” state, the Mobile-
Socket connection is disconnected implicitly by the
libraries itself without any explicit API called from
the applications.

In the state transition of MobileSocket, Closed state
transits to Established state by connecting the initial
socket connection. State transitions between Estab-
lished and Explicitly Suspended are triggered by call-
ing suspend() and resume() interfaces at the mobile
host. Transitions between Established and Implicitly
Suspended are triggered by the mobile host’s sensing
of the IP address reconfiguration.

4.4 DSS Time Sequence

In Dynamic Socket Switching (DSS), there are four
particular phases, “DSS-EstablishmentPhase”, “DSS-
ExplicitSuspendPhase”, “DSS-ExplicitResumePhase
”, and “DSS-ImplicitResumePhase”. Figure 4 shows
the overview of DSS time sequence at the connection
establishment, suspending, and resuming.

DSS-EstablishmentPhase
DSS-EstablishmentPhase is performed whenever

the MobileSocket connection is being established. Fig-

ure 5 shows DSS-EstablishmentPhase.
DSS-EstablishmentPhase is described as follows.

(1) The client connects a DataSocket connection to
the server.

(2) The server starts ControlSocket, a server socket,
after the DataSocket acceptance, and send its port
number and a seed for authentication to the client.

(3) The client makes a ControlSocket connection to
the server with the port number and seed client
just received.

Connection Establishment

Ciient Server;| Closed
State

DSS-
Estabilshment
Phase

Established
State
f % Explicit Redirection

Established
State

Implicit Redirection

Bopicitsuspend
xplicitSus
Ph‘:u pen
Explicif
Sugpen“éedstnte

DSS-
ExplicitResume
Phase

disconnect’

Broke
pipe

Implicitl

SuspendedState | resume(q

DSS-
implicitResume
Phase

Established
State

Established
tate

Figure 4: DSS Time Sequence

Client Server
Data Control Rediraction gala gon(rol Rediraction
Socket Socket ServSocket ocket ocket ServSocket

® .
2 connect() et accep!()
£ ControlSocket port, AuthenticationSEED1 gc e
Hm 70
o connect()
E [AuthenticationSEED1 accepll)
] S
5 ACK o

f—— reate
8 [ek
u?j &;celzz RedirectionServer port, Next_SE4D
4 Bam—
13
Q

—— Data
ME— e S
SocketWindow ACK_
f—— [———
v 4 y \ 4 v v \ 4

Figure 5: DSS-EstablishmentPhase

~

4

(RedirectionServerSocket, which is a server socket
for next connection after the mobile host reloca-
tion.

(5) The client and the server server exchange the port
numbers and the authentication seeds of Redirec-
tionServerSockets.

(6) Actual byte stream communication between ap-
plications starts.

Relation between the client and the server does
not depend on which side will be the Mobile Host
(MH) that suspends and resumes connection, and
which side will be the Correspondent Host (CH) that
is suspended and resumed connection by the MH.
Therefore the libraries at both sides make Redirec-
tionServerSocket for the mobility.

DSS Explicit Redirection

DSS-ExplicitSuspendPhase is triggered by suspend ()

API (Java method) called from the application at
the MH. In this phase MobileSocket locks writing
and reading to and from the socket, confirms that

After the authentication succeeded, both side makes

all of byte stream data was read by remote host, and
closes connection. Figure 6 shows the time sequence
of DSS-ExplicitSuspendPhase.

Mobile Host Correspondent Host
Data ontrol Redirection Data ontrol Redirection
Socket Socket ServSocket Socket ocket ServSocket
lock [— SUSPEND_SIGNAL
g ACK lock]
£ e—
o WRITE_COUNTER —
B —
2| ‘Compuge DIFF Compuge DIFF
o
3 Mmoo
a
2 fi’/"i’;’l’i- Spend subkhase Invate Spdd Subhase
of ACK (DIFF_iS _ZERO)
@
2 ¥Close))
YClosen) \ 4
Y Close() A 4

;
Figure 6: DSS-ExplicitSuspendPhase

DSS-ExplicitSuspendPhase is described as follows.

(1) As suspend() API is called by the application
on the MH, the MH informs the CH about the ex-
plicit suspend phase by sending SUSPEND_SIGNAL
through the ControlSocket.

(2) After both sides of connection locked the stream,
they exchange WRITE_COUNTER which indi-
cates the number of bytes the host wrote to the
socket,

(3) Each side calculates the difference between its own
READ_COUNTER and the WRITE_.COUNTER
from the remote.

(4) The library unlocked reading from the socket once
if there is any difference, because it means that
the host should read this “difference” of bytes
more. Confirming that the application have read
appropriate bytes of data, the library locks read-
ing again.

) After the MH makes sure that both the MH and
the CH have locked the stream finally, it close
both DataSocket and ControlSocket connection.
When DSS-ExplicitResumePhase is triggered by

resume () API called from the application at the MH
during “ExplicitlySuspended” state, using Authenti-
cation seed received from the CH, MH tries to re-
connect to the CH same way as the establishment
phase.

DSS Implicit Redirection
When MobileSocket senses that the host has lost

its IP address, the library transits into “Implicitly-

Suspended” state. And the DSS-ImplicitResumePhase

is triggered by sensing the host’s reconnection to

the network. In DSS-ImplicitResumePhase, after the

MH obtains a new IP address, the MH connects to

the RedirectionServerSocket of CH and reconstructs

the MobileSocket connection, supported by ALW re-
transmission. Figure 7 shows the time sequence of

the implicit suspending and DSS-ImplicitResumePhase.

(1) After MobileSocket in the MH senses obtaining a
new IP address, the MH establishes new DataSocket

Mobile Host Correspondent Host ments.
Rata nirol Rediraction Rodiraction o irol NOW - vion . .
ocket Socket ServSocket SOS0Kel ot Sookat Bodiection Table 1: Hosts Spec for Performance Evaluation
I l i » [Host il Mobile Host] Correspondent Host]
~ disconnocted~ PC Dynabook S5-R590 VAIO PCG-737
cor get IP (TOSHIBA) (SONY)
connect) Next SEED > ';“e‘: 0 CPU Pentium 90MHz Pentium MMX
N - reate 233MH
g 7oK, Contlseset por, Aunntaten SEEDA 0% Memmory 10MB TONE-
° grzgtz 0 p10) OS FreeBSD 2.2.TR & PAO-970616
5 ocket A AuthenticationSEED3 | JavaVM JDK T1.1.6.V98-9-23 Tor FreeBSD
0 -
& C”%‘Hﬂ——‘_—"‘ﬁm(—'_f— Create 5.2 Explicit Suspending and Resuming
g | e jonServer port, Noxt_ sedp ___JSoetet ‘We measured the time consumed in
E ——+ . .
x READ_COUNTER MobileSocket.suspend() method, the explicit API
3 e rod Dot retranem " to suspend MobileSocket connection, and
— e e e MobileSocket.resume() method, the explicit con-
nTock ATock nection resuming API. After the two Java applica-
D w— tion establish a MobileSocket connection, we mea-
acketWindow A] sured the time with the suspend() and resume()
| method at the mobile host.
v y v v v v

Figure 7: Implicit Suspending and
DSS-ImplicitResumePhase

connection to the CH’s RedirectionServerSocket.
(2) Asthe CH accepts this connection, the CH switches

the socket and treats this socket as a new DataSocket.

(3) After the authentication checking, the CH sends
the port number of ControlSocket and the next
seed back to the MH as well as starts Control-
Socket server.

(4) After the authentication checking of ControlSocket,
both sides exchange READ_COUNTERs, which
indicate the number of bytes each host already
read from last internal socket connection.

(5) Both of the MH and the CH calculate the differ-
ence between their own WRITE_.COUNTER and
the READ_COUNTER from remote individually
and retransmit the “difference” bytes of data to
the remote from their own ALW.

(6) Both libraries unlock the DataSockets and appli-
cations restart to communicate with the new socket.

5 Performance Measurement

In this section, we present the performance eval-
uation of the connection redirection in the Mobile-
Socket library. We can observe some overheads which
can be reduced more by source code optimization,
while the performance of internal socket depends on
the Java environment.

5.1 Evaluation Environment

MobileSocket is implemented in Java. We use Java
Development Kit (JDK) 1.1.6 on FreeBSD 2.2.1R.
The TCP MobileSocket implementation consists of
about 1,800 lines of Java source code.

Table 1 shows the platform we evaluated Mobile-
Socket. The mobile host and the correspondent host
are connected through closed 10Mbps Ethernet. In
both of these hosts, we use FreeBSD 2.2.1R version
with PAO-970616[6], PC Card support package, and
Java Development Kit (JDK) 1.1.6. The following
results are the mean values of 100 times measure-

Result
Table 2 shows the detail times which are consumed
in each process of DSS-ExplicitSuspend Phase, and
table 3 shows those of DSS-ExplicitResume Phase.
suspend() takes 46.67 milli-seconds, and resume()
takes 270.28 milli-seconds.
Table 2: Detail of DSS-ExplicitSuspend Phase

[Steps [Time(ms)] %]
manage phase transition 1.76 3.77
lock Socket 7.40 15.86
kill sub-thread 8.12 17.40
send SUSPEND SIGNAL 117 2.80
send WRITE_COUNTER 5.35 11.46
receive ACK from CH 11.01 23.59
(wait for process in CH)
receive port number 1.11 2.38
receive auth seed 1.85 3.96
close Socket 3.28 7.03
prepare Info. of NextSocket 1.02 2.19
miscellaneous 4.60 9.86

{Total | 46.67 | 100.00 |

Table 3: Detail of DSS-ExplicitResume Phase

[Steps | Time(ms) | %]
make new DataSocket 80.75 29.88
switch Socket in stream 0.36 0.13
auth check for DataSocket 2.95 1.09
receive port of ControlSocket 1.11 0.41
receive authentication seed 1.89 0.70
make new ControlSocket 80.80 29.90
auth check for ControlSocket 3.30 1.22
make new NextServerSocket 60.44 22.36
exchange next port and seed 6.62 2.45
restart sub thread 26.56 9.83
manage phase transition 0.90 0.33
miscellaneous 4.60 1.70

[Total I 270.28 1 100.00]

In the DSS-ExplicitSuspend Phase, except the wait-
ing for ACK from the correspondent host, locking
of Socket and termination of sub thread takes rela-
tively higher ratio of whole operation. The mutual
exclusion class, used in the locking part, is made for
the serializable class, in order to make MobileSocket -
class serializable, and it causes overhead. Thread ter-
mination in Java depends on the implementation of
Java Virtual Machine. Concerning about the wait-
ing for the acknowledgment from the correspondent

Table 4: Functional Comparison

Mobility Connection Continuity Implementation
Name of Layer Redirection MH | CH | Others | Existing
K[UTKTU] 1 Apps
Mobile-TP 1P NO X HA, FA
PMI(+M-IP) 1P NO x | x HA FA
MSOCKS TCP LIMITED T X Proxy x
TCP-R TCP YES T X X
VNC Screen YES I X X
‘MobileSocket Socket YES I&E X X
" Implicit Operation, "E”...Explicit Operation, "K...Kernel-Level, "U"...User-Level, "x"... necessary

host, two MobileSocket library in both ends of con-
nection need to confirm that all bytes data each of
them wrote to the socket has already read by the re-
mote library. Therefore, it takes time both libraries
to be synchronized.

In the DSS-ExplicitSuspend Phase, establishments
of three internal sockets are big overhead and take
82.14% of whole operation, although these sockets
are necessary for our approach. In contrast we can
optimize the rest about 20% of operation by pol-
ishing our implementation, while the socket perfor-
mance depends on Java compiler and the Java Vir-
tual Machine (VM).

6 Discussion

In this section, we compare several related works(2,
3, 4,-5, 9]’ functionalities with MobileSocket and dis-
cuss the efficiency of MobileSocket.

Table 4 shows the result of functional comparison
between the related works and MobileSocket. We
compared these works in the points of view of “mo-
bility”, “connection continuity”, and “implementa-
tion”.

We have adopted the application layer, socket level
approach to mobility and connection continuity sup-
port. The main argument why we have this approach
is that currently the most popular network program-
ming interface for the applications is the socket. Un-
der the situation that any protocol stacks are hidden
from applications by socket interface, to simplify the
structure and the implementation, we see that real-
izing the mobility and continuity in the socket layer
is the most appropriate way.

On “Connection Continuity”, MobileSocket pro-
vides connection continuity with both implicit and
explicit redirection mechanism.

One of the design goal of MobileSocket is the user-
level implementation. MobileSocket does not require
the implementation any other than in the user-level
of the MH and the CH. It means that the advantages
of MobileSocket can be distributed to users by the
application including MobileSocket.

7 Conclusion and Future Work

In this paper, we have presented the application
layer solution for mobility and connection continuity,
the MobileSocket library.

The MobileSocket library provides mobility and
connection continuity for existing Java applications
without any modification to their source code.

The user-level library in the mobile host and the
correspondent host simplifies and minimizes the im-
plementation. The combination of Dynamic Socket
Switching and Application Layer Window achieves
byte stream consistency for the TCP Socket connec-
tion.

According to our functional comparison between
some related works and MobileSocket, we see that
MobileSocket provides both mobility and connection
continuity in spite of its implementation simpleness,
comparing other works. MobileSocket library is the
competitive solution of mobility and connection con-
tinuity support for applications.

We have two major future work left. The one is
the issue of the implementation optimization, espe-
cially in performance of socket creation in Java which
causes current serious overhead. The other is the ap-
plication of the user level approach for mobility and
connection continuity to other resources, such as the
file descriptor or the host devices. This will be ef-
fective for mobile applications and agents, which mi-
grate to another hosts during their activities.

References

[1] Gosling, I., Joy, B. and Steele, G.: The Java Lan-
guage Specification, Addison Wesley, Reading, Mas-
sachusetts (1996).

Perkins, C.: IP mobility support (1996). RFC 2002,
Internet Request For Comments.

Maltz, D. and Bhagwat, P.. MSOCKS: An Archi-
tecture for Transport Layer Mobility, Proceedings %
the Seventeenth Annual Joint Conference of the I%E
Computer and Communications
1045 (1998).

Qu, X., Yu, J. and Brent, R.: A mobile TCP Socket,
Technical Report, TR-CS-97-08, Department of Com-
puter Science, Australian National University (1997).

Funato, D., Yasuda, K. and Tokuda, H.: TCP-
R: TCP Mobility Support for Continuous Opera-
tion, Proceedings of Ig%E International Conference
on Network Protocols 97, pp. 229-236 (1997).

Hosokawa, T.: PAO: FreeBSD Mobile Computing
Package. http://www.jp.freebsd.org/PAO/.

Inouye, J., Cen, S., Pu, C. and Walpole, J.: System
Support for Mobile Multimedia Applications, Pro-
ceedings of the 7th International Workshop on Net-
work and Operating System Support for Digital Audio
and Video, pp. 143-154 (1997).

Inouye, J., Binkley, J. and Walpole, J.: Dynamic Net-
work Reconfiguration Support for Mobile Computers,
Proceedings of The Third Annual ACM/IEEE Inter-
national Conference on Mobile Computing and Net-
working (MobiCom’97), pp. 13-22 (1997).
Richardson, T., Stafford-Fraser, Q., Wood, K. and
Hopper, A.: Virtual Network Computing, JEEE In-
ternet Computing, Vol. 2, No. 1, pp. 33-38 (1998).

[2

(3]

ocieties, pp. 1037~

;5]

[6

[7

[8

[l

