
Vol. 0 No. 0 IPSJ Journal 1959

Regular Paper

Federated Computing within an Untrustable Infrastructure

Emil Meng,†1 Hirotake ABE,†2 Kazuhiko KATO,†2,†3

Mizuki OKA,†4 Richard POTTER†2 and Péter SURÁNYI†3

High availability is desired by many parties ranging from large-scale businesses running
mission-critical servers to individuals hosting vanity web-sites. However, in order to achieve
such high availability, one would need to have access to a great deal of resources, such as a
computing cluster environment. Such solutions are usually prohibitively expensive for most
parties, but if the services could be replicated in a peer-to-peer manner, it would dramatically
bring down the cost. Since the advent of peer-to-peer computing became popularized, systems
have been primarily created to ensure that access to data remains highly available. We take
this previous idea and refine it to meet our goal of making services available in a secure
manner.

1. Introduction

Harnessing the power of a massive num-
ber of computers orchestrated to attain a goal
has been accomplished through many differ-
ent groups. The Search for Extraterrestrial In-
telligence (SETI)1) has exhibited a phenome-
nal success in garnering users to donate their
processing power during their idle cycles and
have in turn progressed science. Napster2) and
more recently Kazaa3) have also brought mil-
lions users together to share and trade data.
Google4) also has massive computing farms in
order to carry out the demand of millions of
searches per day.

The infrastructure of federated computing
has historically been created and maintained
within a trusted cluster. Most corporations
use distributed computing solutions in order
to achieve high availability and these solutions
usually cost on the order of millions of dollars,
if not more. For the average computer-user, the
cost of creating such an infrastructure is a ma-
jor prohibiting factor and thus we have set out
to create a system that would guarantee high-
availability in a peer-to-peer backbone.

Peer-to-peer networks have been insecure by
nature due to the fact that any peer joining
the network has the possibility of being an ad-
versary. In order to stay chaos within an un-

†1 University of Colorado, College of Engineering and
Applied Sciences – Department of Computer Science

†2 CREST, Japan Science and Technology Agency
†3 University of Tsukuba, Graduate School of Systems

and Information Engineering
†4 University of Tsukuba, Master’s Program in Science

and Engineering

trusted infrastructure, other means need to be
in place in order to validate the information be-
ing passed.

Throughout this paper, we will present a gen-
eral discussion about bringing federated com-
puting into a peer-to-peer environment as well
as propose a simple model that exemplifies our
ideas. In section 2, we will explain what mo-
tivated us to conceive such an idea as well as
related works that shaped our methods. Af-
terwards, we present our approach to solve
the problem of building a federated computing
group given an unstrustable infrastructure in
section 3. In section 4, we discuss a variety of
different attacks that may be launched against
our system and hypothesize how they will fare
through them. Section 5 will present our weak-
nesses in our system and we will close in section
6.

2. Motivation and Related Works

High availability is always nice to have but
isn’t necessarily financially practical for the vast
majority of users. Our motivation comes from
taking services, such as apache, and ensuring
that they maintain high availability at a low
cost. Using a peer-to-peer infrastructure can
achieve such a goal and could possibly lead to
other beneficial effects, which includes a lower
utilization of global bandwidth as well as a
faster retrieval time.

At this time we would like to define what we
mean whenever we mention federated systems.
Computers within federated systems work to-
gether to accomplish a certain task, but instead
of being dedicated to that task, they remain au-
tonomous and are under direct control of their

1

研究会Temp
テキストボックス
－45－

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス
社団法人 情報処理学会　研究報告IPSJ SIG Technical Report

研究会Temp
テキストボックス
2004－OS－96　(7)

研究会Temp
テキストボックス
2004／6／17

2 IPSJ Journal 1959

owner.
Federated systems within a trusted infras-

tructure have existed for a long time, and there
has also been advances in federated systems
within untrusted networks. SETI1) in par-
ticular, has taken an untrusted infrastructure
and created one of the world’s most successful,
and possibly the fastest, computing farms at a
fraction of the cost of a traditional supercom-
puter. However, SETI’s approach uses a mas-
ter/slave relationship where the users grab data
sets from a central server. This central server is
where a single point-of-failure could occur, and
thus does not satisfy our requirement for being
highly-available.

The High Availability Linux Project5) also
sets out to bring reasonably affordable high
availability computing to both users and corpo-
rations alike. They achieve this goal by creating
a trustworthy infrastructure that the adminis-
trator protects and maintains. While this is a
feasible solution to most users wishing to have
security by maintaining a reliable mainframe, a
single point-of-failure still exists from an out-
sider view. These clusters are usually created
behind a single internet connection, and if that
connection were to cease functioning properly,
any services run within that cluster would re-
main dead to the outside world.

Most existing peer-to-peer systems’ purposes
focus on making data available to its commu-
nity. Some systems make the data available
based on the popularity, while others wish to
make the data longevous, such as Free-Haven6)

or the Eternity Service7). Our proposal departs
from these traditional methods, and instead of
making data available, we make services avail-
able. There are obviously many issues that need
to considered, as a redirection of this magnitude
requires critical analysis.

3. Our Approach

In this section we will flesh out what needs to
be done in order for our peer-to-peer backbone
to successfully support and maintain itself. We
rely on virtual machines to provide service as
well as peers to host them. On top of that we
have a central authority to provide knowledge
to both interested peers and clients.

3.1 Overview

In this section, we outline what is necessary
in order to create a highly-available federated
system within a peer-to-peer backbone. First
and foremost, we are going to need virtual ma-

chines to run the services that we wish to make
highly available. Furthermore, we explain how
any service can be run within the virtual ma-
chines within the peer-to-peer backbone. Since
we have been endlessly stating how we are cre-
ating this system with a peer-to-peer infrastruc-
ture, unsurprisingly, our system needs peers to
host these virtual machines. Along with that,
there is a central authority that acts as a guide
to give necessary information to all the peers,
as well as the regular clients. The system also
is very lax on security and it is up to the peers
to make sure that everyone is playing by the
rules.

3.2 Virtual Machines

In order for a peer to run a given service,
it is not feasible to do so given a list of rules
and/or specifications. Many services are very
complex and thus a simple rule-set would not
suffice in mimicking the original intent. For ex-
ample, apache may have a configuration file,
but if a page it serves requires some module
that is non-existent on another peer’s machine,
there is no easy way to distribute that depen-
dency. Thus instead of mimicking, we propose
that an entire virtual machine be run. There a
few different virtual machines that can be used
for this purpose, but we will feature Scrapbook
for User-Mode Linux (SBUML)8).

The reason we choose SBUML over other vir-
tual machine solutions is that it falls in line
with our design goal to make solution inexpen-
sive. Another major factor in deciding to use
SBUML is that it, as its name implies, can take
snapshots of a machine’s state. This allows that
state to be resumed by anyone who received it.

3.3 Running Services

As mentioned before, a server only has to
take a SBUML snapshot of the machine so they
can distribute their saved state to the commu-
nity. Usually these snapshots are very large
(on the order of hundreds of megabytes), how-
ever, since SBUML also supports a delta mode,
a taken snapshot that can be scaled back in size.
This delta mode takes a common base, and any
changes above the common base is recorded.
Thus, if one takes a kernel as their common
base, and only installs a simple service on top
of it, a snapshot that would normally take hun-
dreds of megabytes would then take only a frac-
tion of that.

As our motivating example above, let us
again take a complex and convoluted apache
service setup. In this complex setup, there are

研究会Temp
テキストボックス

研究会Temp
テキストボックス
－46－

Vol. 0 No. 0 Federated Computing within an Untrustable Infrastructure 3

many different modules that are loaded and the
server will also have a complex configuration file
that is specialized for a single version of apache.
With the use of SBUML, there is no need to
worry about making sure that the environment
is correct so that the service is acceptable be-
cause the entire state of the machine is passed.
Since the apache service at this point is already
in a running state, so there is also no hassle
of booting the virtual machine and making you
start the requested service. Thus, all that needs
to be done in order to correctly run this com-
plex service is to acquire the delta mode snap-
shot, and execute it.

Thus we suggest that a standard base kernel
be created and distributed so all servers have
a common base. This is done for a number of
reasons. The first and most obvious one is that
there is a lot of space saved by everyone using
the same base kernel. Thus the smaller delta
snapshots only needs to be distributed, mak-
ing the system more efficient. The other reason
for doing so is to make the system more secure.
Peers can validate which kernel they’re running
by checksumming it against the known check-
sum provided by the central authority. Thus
if only trusted kernels are allowed to be run,
which we highly advise, there is a lower pos-
sibility of a server sending a malicious stated
virtual machine into the community.

3.4 Peers

Peers build the backbone that allows systems
like ours to operate. Unfortunately, in a poorly
designed system, often a single or small group
of malicious users can severely cripple the op-
eration of the system. Thus in order to ensure
order within the system, much like other peer-
to-peer infrastructures, we will reward the users
who contribute to the community. A peer can-
not expect others to willing serve his content if
he himself is unwilling to do the same for others.

Each peer will also create a paired crypto-
graphic key so that he may cryptographically
sign his virtual machine he wishes to insert into
the network. The reason this needs to be done
is for the end-user accessing the peer’s content
will be able to verify that it indeed came from
that peer, and not from a malicious host mas-
querading to be an authoritative voice of the
peer. This key, along with any commitments
the peer has made in hosting others’ services,
will be reported back to the central authority.

Another important issue to depict here is that
when multiple services run on a single system,

there will probably be some resource conflicts
as far as networking is concerned. Some ser-
vices will be more popular than others, and if
there are two instances of a service on the same
physical machine, a conflict for the port will en-
sue. To resolve this conflict, we propose that all
virtual machines create a unique virtual private
network address, and have the physical network
interface bind and map random ports to the
specified port within the requesting virtual pri-
vate network; i.e., if two apache servers are run,
one would have be running on 10.0.0.1:80, and
the other would be on 10.0.0.2:80. And the
physical address xxx.xxx.xxx.xxx would have
two random ports chosen to map to each of the
two private addresses respectively. Below, fig-
ure 1 depicts what was described above.

 xxx.xxx.xxx.xxx
HOST

VirtMach B
 10.0.0.2

VirtMach A
 10.0.0.1

80

80

21533

37198

Fig. 1 A simple example of remapping a real ip/port
address to a virtual machine’s virtual ip/port
address.

3.5 Central Authority

The central authority in our peer-to-peer sys-
tem acts as an informant and maintainer of our
system. It has multiple jobs including: the
hosting of all public keys for all peers, remem-
bering the commitments made by peers to serve

研究会Temp
テキストボックス

研究会Temp
テキストボックス
－47－

4 IPSJ Journal 1959

each other’s content, and informing clients on
how to access their desired service.

First and foremost, all public keys generated
by peers in the system must report their iden-
tity to the central authority if he wishes to be
known within the system. This is so that there
is an authoritative voice describing who can
answer queries about the identity of the peers
within the system. This is needed because an
adversary might claim to offer someone’s ser-
vice, but in turn offers something completely
different. The only way to guard against this
is to make sure that the received information is
signed by the originating host.

Secondly, the central authority needs to be
aware of peers as they commit to host each
other’s services for two reasons. As peers com-
mit to each other, more pathways are created
to get to a single service. If these pathways
become lost, unknown, or unusable, it is effec-
tively useless. Thus the first job of the central
authority is to ’remember’ these pathways so it
can teach others how to access services. An-
other reason to do this is for accountability. If
a peer promises to host a service, and for some
reason no longer keeps his promise, that peer
should be punished, though he won’t be for the
time being.

Lastly, the central authority needs to be able
to tell clients how to get to their desired host. If
their request is for something that isn’t within
its database, the request is then relinquished to
DNS. However, if it can find a match (hostname
and port pair), then it will return a list of known
serving peers and the port to which each peer
has designated to run the requested service.

3.6 Clients

Clients are the users of the system who wish
to access the services hosted by the peers.
Please note that there is a distinction between
clients and peers. Peers are the workhorses
in the system that host the services while the
clients only find the peers via the central au-
thority. When receiving a list from the cen-
tral authority, the client then caches that in-
formation for a fixed period, and each subse-
quent request will be done in a round-robin
order until all nodes have been visited, keep-
ing track of the latency and bandwidth of each
server. From that information, the client should
be able to choose the best node with the best la-
tency/bandwidth pair. The user will then use
the ’closest’ node and thus reduce the overall
traffic in the global network.

3.7 Self-policing

Since the data being served by peer is gen-
erally dynamic in nature, it is impossible for
clients to validate the information coming from
the peer by either checksums or by signatures.
The motivation for an adversary to become a
peer within the system and change the contents
of the virtual machine when hosting someone
else’s service is rather compelling, and can be
done easily without regular clients being able
to differentiate between a tampered service and
an untampered service. Thus we assign the re-
sponsibility of checking for compliance to the
peer that ’owns’ the virtual service, as he is
the only one who can manually validate the dy-
namic contents, and has the most vested inter-
est in ensuring that the peers who are serving
his data comply with the rules of the system.

Peers may receive a list from the central au-
thority detailing which peers are serving their
virtual machine. If the virtual machine’s owner
finds that a peer is misbehaving, he may report
this information to the central server. The cen-
tral server in turn removes the peer from the au-
thorized list of peers serving that particular vir-
tual machine. The reason we don’t remove the
peer entirely from the system is because that
would give incentive for adversaries to falsely
complain to the central authority. And since we
only ban that particular virtual machine from
the misbehaving peer, there is no incentive for
the peer to lie because if he did so, he would
only be hurting himself.

4. Attacks on our System

In this section, we will describe different at-
tacks that may be carried out against our sys-
tem. For each attack, we will describe how it
can be performed as well as the effect that it
may have on our system.

Physical Destruction of Peers: The phys-
ical destruction of a single peer is relatively
meaningless to the entire system. Since the
design of the peer-to-peer system is for high-
availability, it would make sense that if a peer,
or even a large portion of peers, becomes unac-
cessible or destroyed, the system will continue
to work. Thus, the system should also be safe
to almost any act of God: earthquakes, fires,
small meteor strikes.

Denial of Service Attacks Against

Peers: Much like the physical destruction of
peers, a denial of service will do little to affect
the high-availability characteristic of the sys-

研究会Temp
テキストボックス

研究会Temp
テキストボックス
－48－

Vol. 0 No. 0 Federated Computing within an Untrustable Infrastructure 5

tem. Needless to say, there is no way for the
victimized peer to receive contact information
from the central authority, but his virtual ma-
chine will still be accessible by other peers that
are serving it.

DOS against the Central Authority: A
denial of service against the central server will
not allow any authoritative changes to be made,
nor will it allow any new clients/peers to get
info about the current state of the system.
While peers that have knowledge about the sys-
tem before the attack can still act with cached
information, new peers/clients will not be able
to gather any information as to how to find their
requested resource. This is a very serious prob-
lem and an aspect where a distributed central
authority presents a solution.

Faulty Trusted Kernel: While we endorse
the use of a kernel that is widely accepted as
safe, there is always the possibility that there
is a bug in that kernel that could allow crack-
ers to take advantage of machines. For example
there were the past mmap bugs as well as the
close call where malicious code was successfully
inserted into the official cvs repository of the
Linux kernel. While revoking kernels is an op-
tion, it is a very costly one, though ultimately,
possibly the only feasible one. Another possi-
ble solution is to install some sort of intrusion
detection system and incorporate that into the
base snapshot.

Highly-available Spam Haven: Since
there are no restrictions on what can be sent on
a virtual machine, spammers can create their
own spam relay to propagate and distribute
their solicitations through our system, making
their service highly available. This is an obvious
annoyance to everyone and unfortunately, there
is no good solution. Of course, the possible
maluse of our system does not pertain only to
spam, but anything that one wishes to anony-
mously serve, such as warez distribution sites,
etc.

5. Weaknesses in the Architecture

This section will discuss where weaknesses lie
in our system.

The aim in our system is to provide high
availability. Our system is designed to be able
to continue to provide service when hosts go
down, as well as when the network experiences
difficulty. However, if the central authority ever
becomes unavailable, our system fails to meet
its designed purpose. We are currently working

to see if it is possible to distribute the central
authority without compromising security, but
that remains outside the scope of this paper.
Meanwhile, traditional high-available solutions
for the central authority should suffice in guar-
anteeing that the system will not fail.

As virtual machines are under the complete
discretion of the user who is running it, there
are no checks or balances made against peers
that accept foreign virtual machines. This
allows the peer to browse through anything
within the virtual machine at his liking. In-
formation within a database could very well be
sensitive, such as a listing of people’s names, ad-
dresses, and credit card information. And since
the dissemination of such sensitive information
would not be acceptable, it would unfortunately
make our solution unfeasible to those who need
services that require privacy.

Bandwidth usage is also another vital point
that hasn’t been thoroughly addressed in this
paper. The problem is that some services re-
quire or attract higher bandwidth usages than
others. Naturally, peers will have different
bandwidth allocations, and there is the notion
of whether giving bandwidth-hungry services to
those who can handle them is a fair practice or
not. Rather, we could also make a rule to sim-
ply distribute the virtual machines randomly,
and hope that the receiving peer can handle the
bandwidth expected by the service. There are
many different possible solutions to this prob-
lem and should be resolved in a future work.

Another problem is that there are many ser-
vices that we expect to run that will require
the virtual machine to change and thus affect
the service it is originally providing (i.e., a lo-
cal database commit). A change that is only
apparent on a single peer that isn’t distributed
to all peers could very well throw the overall
service into an incorrect state. Thus for ser-
vices that depend on a global database that
needs to be in sync, we delegate responsibility
to more traditional solutions, such as a ded-
icated database server outside of our system.
This unfortunately reintroduces a single point-
of-failure.

Since our system takes absolutely no penal-
izing action against misbehaving peers, a peer
may continue to disrupt the system without any
consequences. While this is undesirable, if we
do enact a retribution system, it will open the
doors to other types of attacks that are more
vicious and harder to control. So in order to

研究会Temp
テキストボックス

研究会Temp
テキストボックス
－49－

6 IPSJ Journal 1959

prevent other problems from occurring, we al-
low this one to be incorporated unchecked by
the central system.

Throughout this paper, we assume that the
central authority is an unbiased and trustable
entity. If this assumption ever fails, the sys-
tem is not guaranteed to work. If the central
authority wishes to silence a particular peer, it
may do so by not informing anyone else about
the peer’s listings, effectively making that peer
unknown to the world.

6. Conclusion

Federated computing has been established in
trusted computing infrastructures, but rarely
seen in an untrusted infrastructure. In this
paper, we have looked into the possibility of
achieving a federated computing cluster via the
use of a peer-to-peer backbone. While there are
many challenges that still need to be resolved,
we hope that we have whet the appetite of the
reader as to the different possible benefits that
such a system could bring.

References

1) of California: Berkeley, U.: The search
for extraterrestrial intelligence (1999) http:

//setiathome.ssl.berkeley.edu/.
2) napster.com: napster.com (2003) http://

www.napster.com/.
3) kazaa.com: kazaa.com (2003) http://www.

kazaa.com/us/index.htm.
4) Barroso, L.A., Dean, J., Holzle, U.: Web

search for a planet: The google cluster archi-
tecture. (2003)

5) Team, H.A.L.P.: High-availability linux
project (2003) http://linux-ha.org/.

6) Dingledine, R., Freedman, M.J., Molnar, D.:
The free haven project: Distributed anonymous
storage service. (2000)

7) Anderson, R.J.: The eternity service. (1996)
8) Potter, R.: Scrapbook for user-mode linux

(2003) http://sbuml.sourceforge.net/.

研究会Temp
テキストボックス

研究会Temp
テキストボックス
－50－

研究会Temp
テキストボックス

