HEM7 —*570F 4 482
(1983 3 18)

k Cl-)v7U-/\°’) LL

kB2

- T -%T

7 x

¥ R
(HERE W)

ABSTRACT A special feature of a control
flow parallel computer (CFPC) is the presence
of a so-called NODE-DRIVE REGISTER (NDR). It
denotes the locations of executable instrue-
tions and corresponds to a program counter in
a conventional stored program serial computer
(CSPSC). By means of NDR it is possible to
execute the instructions concurrently as well
as nondeterministically without control
complexity. The CFPC can, execute not only
control flow programs but also data flow
ones.

I. Introduction

In 'recent years a number of research
groups have proposed various data flow
computér architectures [1] - [8] suitable for
parallel processing. In contrast to these,
the control flow parallel computer (CFPC)
employed the concept of control flow used in
a conventional stored program serial computer
(CSPSC). What makes the CFPC different ‘is
the use of a so-called NODE DRIVE REGISTER
(NDR). The NDR, corresponding to the program
counter of CSPSC, is to store LINKAGEs and
CONTROL - TOKENs (CTs). for indicating,
location(s) of executable instruction(s) and
completion of the preceding instruction(s),
respectively. The presence of the NDR makes
it possible for processors to execute
instructions concurrently and nondetermin-
istically. The CFPC can execute also data
flow programs because data . flow processing is

nothing but a~ data-restricted control
processing. The ‘NDR is expected to

relatively small in size because the = control
-tokens occupy space in the "NDR' for a very

short transient period and one control token
can be constructed from one bit. The small
scale NDR results in the simplicity of the
interconnection network and the control
circuit. A method to'reduce - the complexity
of a multi-port main memory will be also
described. -

An instruction ' of a

parallel computer

program must have LINKAGEs to direct the next.

instruction(s) to be executed. Because one
or more instructions may become executable
after the completion of an instruetion, and
those instruction executions -<can not be
directed by means of progr.am counters as done
in CSPSC.

II. Control flow program

A control flow program consists of nodes,
ares and control tokens. Instructions
associated with the nodes are executed as

be

E: :ESTS
STs
CTs
; % §CTs

~ token on each

€1

(a) Firable node
U Start of firing

(b) During the computation

U

(c) Completion of the
computation

!

(d) Completion of the
firing

Fig. 1 Firing process of a node.

control tokens flow along arcs according to
the firing rules as shown in Fig. 1. A mnode
may fire whenever a control token is present
on each of its incoming arcs (Fig. 1 (a)).
When a node fires one control token 1is
removed from each of its incoming arcs. As a
replacement, a new token called SHELL TOKEN

(8T) is put on each arc (Fig. 1 (b))
collectively. A control token is outputted
on each of the outgoing arcs after the

the instruction or the function
(Fig. 1 (e)). Then the shell
of the incoming arcs is removed
(Fig. 1 (d)). If ‘it is impossible to output
the control token on any outgoing arc because
of too many tokens on it, STs are still
removed from every incoming arec and a so-
called RESULT: TOKEN (RT) is put on it.

Fig. 2 shows an example-of -a control flow
program for calculating x=(-b + 4b2- Hac) /2a.
The program is the same as the corresponding
CSPSC flow-chart except - for the parallel
calculations and control tokens (CT1, CT2).
The program and data (a, b, ¢ and x) without
the control tokens are stored in the main
memory.

completion of
(f) execution

(=4xaxc) (mi=bxb)

I::(—b*)/l

Fig. 2 Control flow program for computing

<= -b+¥b? -dac

2a

III. Organization of a control flow
parallel computer
The organization of a control flow
parallel computer (CFPC) is shown in Fig. 3.
The architecture is fundamentally that of a

CSPSC. However, a node-drive register (NDR),
plural processing units (PUs) and a multiport
main memory (MM) are used instead of a
program counter, one processing unit and
conventional main memory, respectively. The
NDR stores the control tokens, the shell
tokens and the result tokens as so-called
control token packets (CTPs), shell token
packets (STPs) and result token packets
(RTPs), respectively. Those token packets
(TPs) consist of a node pointer (NPR), a
status data (SD) and tokens (T0,...,Tn) which
will be sent to the node indicated by the
NPR, as shown in Fig. 4. A control token
packet containing all the necessary control

Fig. 4 Format of token packet,

PACKET (CCTP). The SD is used to distinguish
the CTP, STP and RTP. A multi-port main
memory (MM) stores control flow programs and
data, and corresponds to the main memory of a
CSPSC.

The NDR consists of a NODE POINTER MEMORY
(NPM), a TOKEN INDICATOR & STATUS DATA (TS)
and TOKEN COUNTERS (TC0,...,TCn) as shown in
Fig. 5. The NPM and the TCs in a word of the
NDR store the node pointer NPR and tokens of
the token packet, respectively. Each TC is a
counter which is incremented or decremented
by storing or taking out a token
respectively. The TS stores the SD of a
token packet and the status of the word. The
NDR is an associative and multiport memory to
be accessed through each of the node pointers
by plural processing units simultanously.

A CFPC program is stored as a set of so
called NODE PACKETs (NPs) in the multi-port
main memory. The NP consists of an
INSTRUCTION or a FUNCTION (INS) and DATA
ADDRESS(es) or DESTINATION NODE POINTER(s)
(DA/DNPp,...,DA/DNP1) as shown in Fig. 6.
The data address DA is a memory address into
or from which data is written or read. The
destination node pointer DNP is a linkage to

tokens is called COMPLETE CONTROL TOKEN the next node packet (NP) which is to be
Processing
units \

) . .
Node-drive PU1 Mu!hport
register main

PU2 memory

| . . °

| . : : MM

NDR ° : °
. *
*
d []
! '
PUm

Fig. 3 Organization of the control flow parallel computer.

€2)

Token indicator & Status data

Node pointer
memory \ Ioken‘ counters
[TR SUN W -,
NPM | TS |TCo | TCt TCn

Fig. 5 Node-drive register (NDR).

Instruction Data address or Destination node pointer

Fig. 6 Format of a node packet.

executed after the completion of the firing
of the node. After starting of an NP-firing,
the data denoted by the read-from DA(es)
is(are) processed by the PU, and the
result(s) is(are) written in the word(s) of
the MM denoted by the write-into DA(es).
Then the control token(s) is(are) sent to the
NDR as CTP(s) using the DNP(s).

IV. Execution process

The . execution process of a CFPC is
essentially the same as that of the CSPSCs.
The execution of a node or an instruction
(Fig. 7) is divided into four stages: token
packet fetch process, instruction fetch
process, instruction execution process and
NDR update process.

The following is a detailed
algorithm for the architecture.
* Token packet fetch process

1. A PU reads a CCTP, if there
from the NDR and writes "STP"
of "CCTP" in the SD.
goes to step 1.

* Instruction fetech process

2. The PU fetches from MM the NP pointed

by the NPR of the CCTP read in stepi.
* Execution process

3. The PU executes the corresponding

instruction or function of the NP.
* NDR update process

4, After completion of the execution, the
PU creates new CTPs using the DNPs in
the NP fetched in step 2, and sends them
to the NDR.

5. The PU sends a delete
STP to the NDR.

6. When the NDR receives the new CTP from
the PU, the NDR checks for CTPs, which
were already stored, with the value of
the NPR equal to that of the new CTP.

7. If there is one, the NDR increments the
TCs associated with the control tokens
in the new CTP to be stored. If not,
the NDR stores the new CTP in a vacancy

execution

is any,
in place
Otherwise, the PU

signal for the

€3

]

Token Packet
Fetch

Token packet fetch
process

Instruction

Instruction fetch
Fetch nstruch

process

Instruction

. Instruction execution
Execution

process

NOR Update NDR update process

|

Fig. 7 Execution process.

word of the NDR.

8. When the NDR receives the delete signal
for the STP in the step 5, the NDR
removes the STP, then decrements all TCs
of the word of the NDR in which the STP
was stored.

In case the values of all TCs become zero
in step 8, the word in which the STP has been
stored becomes a vacancy. On the other hand
an overflow of any TC may occur during step 7
thus, the PU is informed by means of an
interrupt. Such overflow implies unsafeness
of the execution. The PU receiving the
interrupt changes the STP into RTP and writes

the CTP(s), which could not send to the NDR
for the next nodes, in the RTP. The sending
of a result token resumes when the RTP is

read in step 1 after such overflow ceases.
That is, the PU begins the process from step
4 onwards and the PU sends a delete signal

for the RTP instead of one for STP in step 5.

V. Reduction of complexity of the

multiport main memory

The complexity of the multiport main
memory MM can be reduced if the memory is
divided two parts, a program memory (PM) and
a data memory (DM), as shown in Fig. 8. The

PM is a conventional memory which holds the
control flow program, and is duplicated for
each PU. Therefore the PM is a read-only
memory for the PUs and is a write only memory
for a host computer (HC) which writes control
flow programs in it. The DM is also
conventional memory and is divided into more
than m banks to make a shared memory (the m
is the number of PUs). A mutual exclusive
control for each bank should be implemented
but it is expected to be relatively small in

|

! Data memory 7

Program memory
(Read only for FUs) !

-1 DM1

DM2

L— |

|

. [Pu —

NDR

Fig. 8 Simplification of the MM,

of the
memory

size because the minimum number
required banks to avoid data
contentions is the number of the PUs.

VI. Conclusion

The concept of accumulators in a PU is not
useful in this parallel computer because the
accumulators are no longer common areas, as
in the CSPSCs, but local areas.

It is easy for the control flow parallel
computer to execute the data flow programs
because the data flow processing is simply a
kind of control‘processing directed by the
availability of the required data. Therefore
this computer is said to be a resource-driven
[10] or combined driven [11] computer.

The NDR is 'quite similar to the token
memory (TM) in ' the data flow computer
proposed by us. However, as the NDR does not

have to store data, it is expected to be
simpler than the TM. And most of all
technique developed in the CSPSC, for
example, the subroutin call, the recursive
call and the processing of structure, can be
used because this computer operates in the
concept of control flows. The presented
architecture is one of more generalized
architectures for parallel computers.
B
References
‘L1]1 J.B. Dennis and D.P. Misunas, "A
preliminary architecture for a basic
data flow processor", IEEE Proc. 2nd.
Comput. ‘Arch., 1975, pp.

‘Annu. Symp.
126-132. .
[2] A.L. davis, "The architecture of DDM1:

€4

3]

[4]

[5]

[61]

[71

[81]

91

[10]

[111

A recursively structured data driven
machine", Dep. Comput. Sei., Univ,
Utah, Tech. Rep. UUCS-77-113, Oct. 1977.

J. Rumbaugh, "A data flow multi-
processor", IEEE Trans. Comput., vol.
C-26, pp. 138-146, 1977.

Arvind and K.P. Gostelow, "Data flow
computer architecture: Reseach and
goals", Dep. Inform. and Comput. Sci.,
Univ. California, Irvine, Tech. Rep.

113, Feb. 1978. ‘
A.D. Plas, D. Comte, O. Gelly, arnd J.C.
Syre, "LAU system architécture: Parallel
data-driven processor based single
assignments", IEEE Proc. 1976 Int. Conf.
Parallel Processing, Aug. 1976.

J.R. Guard, I. Watson, and J.R.W.
Glauert, "A multilayered data = flow
computer arhitecture", Dep. Comput .

Sei., Univ.
1978.
S.H. Yu and T. Murata, " Modeling and
simulating data flow computations at
machine language level", Proc. ACM Conf.
Simulation, Measurement and Modeling
of Comput. Syst., New York, Aug. 1979,
pp. 207-213.
M. Sowa and K. ' Hayakawa, "Procedure
level data flow computer system
-GMMCS-", Paper of Tech. Group Comput.
Arch. 36-1, IIP Japan, 1979.
M. Sowa and T.Murata, "A data flow
computer architecture with program and
token memories™, IEEE Trans. Comput.,
vol, C-31, pp. 820-824, Sep., 1982.
JIPDC, Proceedings of International
Conference on Fifth Generation Computer
Systems, pp. 57, March, 1982.
P.C. Treleaven, R.P. Hopkins and P.W.
Rantenbach, "Combining data flow and
control flow computing", The Computer
Journal, vol. 25, No. 2, 1982.

Manchester, England, July

