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A new fast control mechanism for supersystems using arearrengeable class
of interconnection network

Issam A. HAMID, NorioSHIRATORI and  Shoichi NOGUCHI
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Tohoku University, 1-1-2, Katahira, Sendai. T 980.

The Interconnection Networks(IN’s), are capable of allowing simultaneous communication between
thousands of processing elements(PE’s) and hence, are considered the heart of the parallel and supersystems.
But if there are many types of manipulations, it becomes necessary to have a rearrengeable IN like the Benes
IN so that we can increase the number of stages to 2n-1, where N=2n, and N is the number of input terminals
which is base 2. But the control algorithm for this kind of IN is very complex. In this paper we have studied
the mapping capabilities of Benes IN to use into super system and we give a control algorithms for setting this
network for a groups of manipulation functions proved to be efficiently used for parallel computation, we have
also shown the implementation of these control algorithm to be used by the system programmers with
examples.
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1-Introduction

The progressing in research on VLSI and VHSIC
technologies is making it feasible to consider the
construction of complex parallel architectures that
comprise a number of processors communicating by
means of a high-bandwidth Interconnection
Network (IN). Recently, there have been extensive
work on the capabilities of constructing architecture
consisted from thousands of VLSI
chips[Fe81][Ha86].

Several modes of operation (i.e., SIMD, MIMD,
etc.), may be desirable in such architectures, like for
example PASM[Si81]. Furthermore, it is widdely
recognized that the communication complexity of
parallel = algorithms may be the principle
determinant of performance.

Reconfiguration involves establishing different
partitions and altering the interconnection between
resources within a partition. The objective is to
perform the reconfiguration in such away that takes
the least total processing time. The problem of
configuring architecture is that of the establishment
of non-over lapping trees; that is the setting up of a
system where instructive trees and data trees can
exists simultaneously without interfering with each
other.

The network is set up according the computation
structures, so that certain topologies(such as ring,
binary tree, near neighbour meshes, and so on ) are
created among sets of nodes,

Powerful pipeline computers are very expensive,
because of the desired speed of components. In a
SIMD computer, functional units are duplicated. N
processing elements (PE’s) perform the same
instruction on different data, which are accessed in
parallel memory banks through an
IN(Interconnection Network).
computing power can be obtained because of the
number of thousands of PE’s. Then SIMD computers
may be built with slower components and achieve
the same performance as pipeline computers. But
difficulties to design a suitable control unit to
handle efficient mapping between the input and
output of the IN become higher as the number of
inlets(N) and outlets(M) of the IN’s become big
(several thousands). Full crossbar IN is not suitable
to design SIMD, because the switches setting for
(NXM)! permutations is very complicated to be a
real design. An alternative is to divide IN into
stages, and such a segmented network with each
stage satisfying partial connection requirements
yields to a multi-stage IN (MIN)[Fe81].

The organization of this paper is, section-1 has
been devoted to introduction, and section-2 gives the
background and motivations, while section 3
presents the new Benes like network, section-4 gives
the set of manipulation showed to be useful for

Tremendous

parallel computation. section-5 presents theorems
and rules used for the setting of the new Benes
network(i.e., the CU mechanism for IN), while
section-6 gives examples for our mechanism.
Finally section-7, is devoted to conclusions.

2-Background and Motivations

samples of MIN’s are Omega IN [La82] and
baseline IN[Fe81], Fig. 1, shows 8 inputs baseline
IN. These networks are implemented with two
states switching elements.Fig. 2, can show the four
functions of the switching element used into Omega
networkwhile the upper two states switching
function have been used into baseline MIN (see Fig.
2). These IN’s are blocking MIN[Fe81], because
they cannot perform or realize some important
permutations between its N=2n inlets and its
outlets, for instance Omega network cannot perform
the shuffle, unshuffle, bit reversal, and etc.., [1.&78 ]

One solution to have a powerful permutation
network is to increase the number of stages to
(2log,N-1), like for example have a Benes IN(see
Fig. 1, for 8X8 Benes IN), which posses a unique
property of passing any input-output bijection.
Benes IN; (B(n)), belongs to the class of
rearrangeable IN [Op71], because it is able to realize
N! permutations. But the control algorithm for B(n)
is complex. Opferman[Op71] gave a looping
algorithms which could calculate the control
information according to the permutation function.
With these algorithms Benes IN can realize
arbitrary permutations in O(N log N) steps so these
algorithms had a severe drawbacks to use for
parallel computation[Lé&78]. Feng[Fe81] has
pointed out that when processing in parallel, the
manipulation which are performed on vectors
generally belong to some general family of
manipulations but he did not specify what these
families In this paper we have extended the
manipulation family to a more strong set of
permutations which is mostly used in parallel
computation, and design parallel algorithms and
setting theorems for realizing these manipulation
set. This new mechanism can enhance the parallel
computation for super system which use Benes type
IN for achieving the complex mapping which are the
most frequently used in O(log N) steps. If in case we
need to use a manipulations that is not included in
that set, we have suggested to use the conventional
algorithms that is taking O(N log N) steps[Op71].

3- Benes like network

The nomenclature of this section is due to Benes
network (B(n)) which is one kind of rearrangeable
MIN[B&65] capable to realize all permutations for
mapping the input to output. The B(n) is symmetric;
the left half and the right half of the network are the
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mirror image of each other, (see Fig. 1) with the
middle stage as the plane of symmetry. The
principle contributions of our paper relate mostly; to
provide a new way to understand and prove the
rearrangeability (or the universality; their ability to
realize arbitrary permutations if multiple passes
through them are permitted.) of 2(log N)-1 stages
rearrangeable networks. We have considered NXN
networks with N=2",

We will use the result of the following
theorem[Ag83] to show the definition of Benes like
network structure composites from two Baseline
kind network.

Bb

Reverse

Baseline IN Baseline IN

Fig. 1 Benes MIN constructed from cascading
two baseline and reverse baseline IN,
with the merging of the dotted block.

Theorem (Fig. 1)[Ag83]

A direct combination of n or (n-1) stages of the
baseline and (n-1) or n stages of the reverse baseline
MIN’s; (we named it Benes like network) can pass
any of the 2" possible permutations in a conflict free
manner, i.e., Benes like network is equivalent to
Benes network. We use these result to construct
Benes like network such that we can build
rearrangeable network from normal MIN like
Omega or Baseline. Hence we consequently may
have a rearrangeable network with a strong
capability for reconfiguration. )

Example of super computer based Benes network
is GF11[Be85] constructed by IBM. The main
objective was to increase the raw processing power
rate of the PE’s. This sample of SIMD machine has a
capability of 11.52 GFlops.

But this machine has a draw back because the
configuration of the connection scheme achieved by
setting Benes network will be loaded previous to the

run and remain constant through the whole
execution of the problem.

Stright Cross
Lower Upper
Brodcast Broadcast

Legitimate states of an interchange k
box(switching element).

Fig.2

Benes MIN consists in systematic way from the
left and right stages which also, consist of N/2, two
states switch elements (Fig. 2 ) which has two
functions, either direct connection (I) or cross
connection (m). In Fig, 1 the middle stages consist of
two parts of rearrangeable networks with N/2 inlets.
The connection pattern between left stage and
middle stage is the reverse perfect shuffle (¢n)-1,
Symmetrically the middle and the right stage are
connected by perfect shuffle connection function ¢,
Due to the rearrangeability definition we mentioned
before, we can have the permutation P, then there
are two permutations, A,, By, in Benes IN which are
subgroup -of input set, also there are two other
permutations My, Mg; such that the Benes IN can
perform P, hence;

P= (Aa, Ml, M2a Bb)

The control pattern for this network is a N/2 (2
log N-1) switches bit matrix which specifies the
setting of each basic switch to perform the requested
permutation.As we stated in the introduction that,
most algorithms to compute the pattern setting for
arbitrary permutation are required O(Nlog N)
steps, thus the setup times for the network is much
larger than the network delay which is O(log N).

Our trail are motivated in the way to find very
strong manipulation functions and derive the
control setting for these manipulation using special
setting formulae for these manipulations. Hence
according to these theorems we design the control
unit for Benes MIN which can be able to realize that
manipulation belonged to listed groups. The new
mechanism can provide a setting steps in O(Log N),
which is a new lower bound for Benes routing
algorithm,

4- Selected Manipulation groups
Within this section we will embody the mostly

used permutation function necessary for
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manipulations used in parallel systems.

In the following we will give some definitions of
groups of functions used for manipulation which will
be used to design the control unit for either Benes or

-Benes like network.

Definition 1

Let (zp, .... X1) is the binary representation of
positive integer, X, whose most significant digit is
ensigned by n, and least significant digit is ensigned
by one, where n=0. Hence we can represent (xy, ....
x1) as; X(,") to avoid different manipulations
entanglements.

Definition 2

The perfect shuffle permutation; ¢, performs the

following permutation;
&(xp, .... X1) = (Zp-1, ... X1, Xn), Where (X, .... X1); is
the binary representation of  integer
X =(xp,... .X1)=Xp20-1+...... x120, which is a subset
of all postive integers, £={0,1,......2n-1}. The inverse
of perfect shuffle; is -1(xp,.... X1) =(X1,Xn,.....X2).

It is well known how the perfect shuffle has a big
role in parallel processing as been noted in details
by Stone[St71].

Definition 3 .

The bit reversal permutation function, p perform
the following manipulation;
p(xn, ... X1) = (X1, ... Xn) =X(");

Bit reversal is also, very important permutation
function especially for FFT algorithms used in
signall processing[St71].

Definition 4

The flip permutation function a; performs the
following manipulation ;a(xp, ..... x1)= (Xpn, .....X1)D
v; where v is a fixed control vector, and ® is a bit-
by-bit EX-OR function.

Definition 5

The shift permutation function B, preforms the

following permutation;

B(RpyerX1)o= BX(My= (X(?)+v Mod 20;

. where v is a fixed control variable vector, and
n=log,N, 0=v<n,

In fact, the flip and shift permutation functions
were firstly, used in the design of STARAN
computers[Ba82].

Definition 6

The permutation function A, which perform the
followingmanipulation;

ARp,eoeeeXDjo = AX(jp= jX+v Mod 2n;
where 0=j<n, and 0=v<2n, wherejisoddandvis
a control vector.

However, the family defined by definition 6, is
very useful for the implementation for the parallel
Load and Store instructions.

Definition 7

The permutation function B, can perform
segmented cyclic shifts, by j, such that;

B(Xn, .o x)jo=  B(ZnyeeXnj+1, BolXn-

oo X D)o = (X 0™, B(X(,™)); where 0=v<2n,
j=n,

This permutation group, represent the circular
shifts of amplitude v, by varying j.

This permutation family can be useful in divide
and conquer technique used frequently, in the
design of parallel algorithms design, that is; when a
computation on n items is replaced by two
computations on N/2 items, and so on.

Definition 8

The permutation function; C(X)jhmy; can
perform within the parameters; j,h,m,v a different
segmented perfect shuffle such that;

C(xp,..... x1)j,h,m,v=

m+1Xnj-hmy -oreX1);

hence; Cjh,m,(Xn,Xn-j, Xn-h» Xnj-h-m), Where;
Xn=(Xn,eee. Xn-j+ 1)=X(n_j+1")=xa. )
Xni=Xnjsr-Zngh+ D=X( iy "D =Xp

Xn—j~h =(Xnj-hye----Xn-j-h-m+ )= X,(n-j-h-m + l“"'h) =X,
Xnjhm =(Xnjh-m,-..-Xx1) =X( ") =Xg,

then;

C(X)j,h,m,k = C(X)j h,m,k = C(Xa,Xp,Xc,Xd)j,h,m,k =
(Xa,xd,xc, beU).

This permutation function is very useful in
parallel programming, especially; in FFT
algorithms and parallel sorting, like Batcher’s
network, where has 2!4 PE’s[Ba82). It is quite
known, that the ability to effectively vectorize a
problem and make optimal use of a vector structure
depends on the availability of means for efficient
data manipulations.

Definition 9

The identity permutation I(X(,")) maps input to
the same input, asif it is the output.

In the above case the switch will have a straight
connection (see Fig. 2).
Definition 10

The exchange permutation n(X(;"), will map
input x onto x+1, if x is even or will map x onto x-1,
ifxis odd. i.e., generally x will be mapped onto x®1.

Fig. 2 shows the state of exchange. The upper two
state in Fig. 2 presents the basic state for the
switching element used in Benes IN, which needs
only one bit of information from the control unit to
set the these switches to either straight(0) or cross
connection (1), but if we use the other lower two
cases, as shown in the Fig. 2 then the CU should
supply two bits of information in order to set the
switch into one of the four states. so that the four
funetions switching element increase the complexity
of the CU to set the MIN to realize arbitrary
manipulation function.

Definition 11

The permutation AX(,"); will map X@m)=
(Zn, «....X;) onto (Xpn, Xn-1,e.--X1 ®x;); In other words,
AMX)j=X® {x;}
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Definition 12 .

‘We may define a manipulation D(X(n)), which
permutes different segmented bit reversal
permutation; which depends on the basic definition
of bit reversal given in definition-3.

. If we suppose we can partition the string of X(n)
into four sub strings according to the parameters;
j,h,m k; such that,j=h=m=n; where;

X()={xn,...... %1} =X(") ={Zn-me++- Xm-h+ 1, Xh.
my-eXhj+15  Xhjseerer-Zj+1,XjseeX1};  Where; X(n-
m)={Zn.m,-...-.Em-h+ 1}=X( 1, . "™

X(bh-m) ={Xp-mye--Xhj+ 1} =Xy 5 ™)
X(h-j)={xh-j,..... xj+1}=X(;, ")
X({={%j,.......x1}=X(;j), then we can represent the

X(n) by the most significant digit; hence; X(n)=
(X(n-m),, X(m-h), X(h), X(§)), and;
D(X(n))= (X(n-m), p(X(m-h)), X(h-j), p(X(j))) Sv.

5-The control unit mechanism

As we mentioned previously, that our control
mechanism, is based on stability concept, as well as
the partitionability of the permutation function, in a
way suitable to be similar to Benes network. Hence
to compute and analyze the control pattern for the
most used manipulation mentioned in the pervious
definitions, we have given in the following a
statement of equations stated as theorems with its
proofs in order to show ‘its validity to be used as
setting rules to compute the control pattern for the
above permutation functions realized on Benes
network. All theorems are based on some rules of
algebra, and quotient groups[Bi77]. If vis a positive
integer then v divided by two results two positive
numbers, one is the quotient; v°, and other is the
remainder vy; hence v=2v" +vj.
Theorem 1

Theorem 2

The Flip permutation (Definition 4); can be
mapped by the Bnese IN wusing the following
equation;
a(X(;"Np= [1(;"), a(X(;* )y, a(X(* Dy, aX(My, I;
if n=2. But if n=1; then oX(Ne=I' ;
g(X(lf))l =n(X(,1).

Proof;
suppose X =(xp,......x1) which belongs to ", we can
represent X =(x",x1), so that, X, represent the n-1
tauple of (xp,......X2), suppose the letter L represents
the left stage of Benes network (see Fig. 5 ), M
represents the middle stage, and R is the right stage.
then by following the mapping performed by these
stages we can have the following, ¢! » L. will map
(x",x1) onto (x1, x*), then by M ° ¢ ° L results the
mapping (x1, x ®v’); this because of Flip
permutation function, then by shuffling this by ¢,

we can have the mapping, (x"®v’,x;)=
(x’,x1)®(v",0), then by the R stages, which is
exchange, then we can have;

((x",x)®(v",0)®v1 =(x",x) D ",v1) = xBv. O

The permutation function defined by (Definition
6) can be setted by;

AX(Me=[ IXG™), AKX, AXGD)4e
a(X(;")y,] ; where j*=j"+v"+v1, n 22, if n=1,
then A(X(;"))1,0=I(X(,"), AX(MN1,1=m(X(1)).
Proof:

In order to proof the above theorem, consider X =
(x",x1) = 2x"+x1; A word of data is broadcast to
upper median switch or lower median switch
according to the parity of the number of the line by
which it enters the network., then integer X is
mapped by the first stage(¢™! o L) such that; we have;
x”+2n-1x; then by the middle stage, we will have
two cases, one if x] =0(even-case), then we have (jx~
v’) Mod. (n-1), the other case is when x;=1 (odd-c
ase), such that;

(Gx”+j +v” +v1) Mod. (n-1), then map the even case
y the perfect shuffle ¢, we may have;

(2jx"+2v°) Mod. n=({X +2v") Mod. n =, (because,
X =j2x" +jx;; as well as z is even;

then (x1©z) =(x1 +2), in this case x is either 0, or 1.,
hen by the last stage, we can have (jX+2v"+2v;)
od n which can be equalled to jX+v) Mod n.

The other case is when x1=1(odd-case), then; by
he perfect shuffle mapping we may have,
j(2x)+(2j"+1)+2v” +2v1) Mod.n =X +2v" +2vy)
od. n=w; as well as w is odd, then w®v; =w-vy,
hen the odd part of X is mapped by the last stage
$; (X +2v"+v1) Mod. n=(jX+v)Mod.n. O
Theorem 3

This theorem will set the segmented cyclic shift
ermutation function defined in (Definition
),according to the following setting:

BX(,"je =MXG™, BEXD)0r, BEX(™
Vi aX(M)y, ; where v*= v’ +v1; and n=2,
=j<n.

Proof;

suppose X=(Xp,....Xn§+1, Xnqs---X1)= (Zn, Xnj);
here;

xn= (Xpye..r-Xnj+1), and; xpj=(Xn4,....X1); then
X'nj=Xnj....x2), and ; Xpj= 2x'nj +x1, then the
ntegr X may be mapped by the first stage so that we
an get; (X1, Xn, X'nj), there after using the middie
tage we may get the following:

(x1, Xn, (x"nj+v1x1+v") Mod. n-j. But we may have
wo conditions; one in case x3 =0; such that we get;
(x1, Xn, ( x"nj+v’) Mod. n-j-1), the other case is
hen x1=1; such that;

(X1, Xn, ( X"nj+v1+v) Mod. nj-1) ; then; by
apping the perfect suffle, we get;

( Xn, (x"pj+vix1+v’) Mod. nj-1, x1); going on to
ast stage we may have;

(Xn, (x"pnjtvix1+v’) Mod. n-j-1, x1 ®v1 )= (Xp, V);
here v is also integr, then; v= (2x"nj+2v1x1+2v"
X1401-2x3v1 ) Mod. n-j
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(2% nj+x1)+(2v14+01) Mod.n-j m =
n-j =Px™. xnj. ]
Theorem 4

The segmented shuffle permutation defined in
defenition-8, can be setted according to the following
setting:
CX(™ ))J hmp= [ AKX, CX(,")j,h-1,m+1,0%
C(X(l ))J,h-l m+1 U‘ Q(X(l ))l}# ° A(x(l ))J# ], Where
j*= nj-h+1 ; ]# h+m+1 ; v*= v’ ®2m+h+l;
v#=01OVh+m+1
The value of h will make diffrent conditions for the
proof; the case when h>0, n=2, and j+h+m<n,
will give us the above setting equation.

But the condition when h=0; we will get;

(Znj+0), Mod

C(X(n));,0,m,p=C(X(1n))j,m,0,v; hence;
C(X(n))j,0,0,y=a(X(n))y.
The condition h>0, j+h+m=n; then;

C(X(0))j,h,m,o=C(X(n))j,h,0,0 then;

ifn =1; then; C(X(n=1))j h,mp=¥(X(n=1)),.

Proof - e
A(X(n)); has been defined in definition ?; if n=2,
h>0, and j+h+m<n, then according to
definition(7); we have X(n))= (Xa,Xp,Xc,Xd); let
Xa=(Xq'x1);  Xp=Xp",Xnj-h+1) then;
X(n))=(Xa,Xb ", Zn-h + 1,.Xe,Xd X1 ), will be mapped
by first stage and the reverse shuffle; so that; we
may have;

(x1® xn-j-h4- I,Xa,Xb’yxn-j-h+ l’XC)Xd, ) ’ then by the
middle stage we get;

(x1® Xnjh+1.Xa,Xb v, X, Xd " )OK"; where v=xnj-
101D Xnjh+1)= =xy; actually the bit v=xpj.
h+1, if  (x1® an-h+1) =0; otherwise V= Xnj.
h+11; then passing through perfect shuffle we get;
(Xa,Xd" %1, XeXb',x1 ©xnjh+1)O20° =w; the
A(X(n))j*; where j*=h+m+1, is the bijection used
onto w; so that, we get;

AX@)jr o w= (Xa, Xd", x1, Xe Xb', Xnj-
h+1)O20” =(X2,Xd,Xe, Xp)®2v"; then buy the last
stage we may have;

(Xa,X4d,X e, Xp)D (20" ©vy). O

Theorem 5

We can set the permutation D(X(n)); defined in
definition 12, according to the different parameters;
j,h,m,v; such that; ifj=0or 1, and n=2, then; we can
have the following setting;
DEX(M=[ KX, DX,
a(X(;")y1 J; where

DiX(*)= (Xn-(m-1)), p(X((m-1)-(h-1)), X(h-
1))630 : Do(X(n-1))=D1(X(n-1)). But if we examine
the case when j =2, we may have the following
setting;

DX =[AMX, Dy(X(,~1), Da(X(;™1)), a(X(;Mv,
o MX(,")jl;where vz = v1®uvj;

Di(X(,*1) = (X(n-(m-1)), P(X((m-l) -(b-1))), X(h-1-G-
2)), P(X(J -2)))®v’ =

D1 (X(™) ©v’; DaAX( rl))= Dy (X)) Sv%
where v*— v’® 2i-2; we may have another case

Da(X(,""),

when j=h=0, then;

DX("= (X(n-m), p(X(m-0))) & v= (X(n-m),
p(X(m))) ® v, hence if n=1, we may have;
DX(n=1))= a(X(n=1)),

proof;

As we have expressed in definition 12, that we can
represent X(n) as;

X(n)= (X(n-m), X(m-h), X(h-j), X(j); For the case of jj
22, going on to the first stage and by induction;
assume fitst; X(j)= X()- {xj,x1}; where x;; is the
least siginficant digit, and xj; the most significant
digit; then;

X(n)= (X(n-m), X(m-h), X(h-), {xj}, X(Gj), {x1© x;});
then by theinverse shuffle we may have;
Xm)=({x1® xj}, X(n-m), X(m-h), X(h-j), {x;}, X(G{j) ),
going on to the middle stage;

({ x1©® x;}, X(n-m), p(X(m-h)), X(h-j), {xi}, p(X(u)) (&)
(v'®0).

The value of {x1® xj}, can inform us about the
connection which to be setted through the upper or
lower median switch; hence, if its value is zero, then
the connection is setted across the upper median
switch, and if its value is one we may set the lower
median switch. hence the aboove equation becomes;
({x1©® x5}, X(n-m), p(X(m-h)), X(h-j), {z; ®1}, p(X({ij)
@ (v’ ® 0). the above conditioned mensioned above
can be joined together such that;

({x1® xj}, X(n-m), p(X(m-h)), X(h-j), {x1}, p(X(j))
(v’ ® 0). there after shuffling we may have;
(X(n-m), p(X(m-h)), X(h), {x1}, p(XG) { x1© %) &
(v'® 0). going on to the last stage ; and due to,
Aj(X(n)), we may have (x1® x;) @xj= xj.; hence;
E(X(n))= (X(n-m), p(X(m-h)), X(h J) {xa}, p(XGp
{xi}) © (v" ® vy); becuase,

{x1}, p(X(j) {x;} = p(x(j); then

E(X(n))=X(n-m), p(X(m-h)), X(h-j), p(x(§))Sv O

As we mentioned before that our controlling
mechanisms for the Benes IN’s CU designs will
enhance the capability for efficient routing for the
Benes IN for reconfigurable architecture.

Consequently, if we want to permute a
manipulation which is not included in the
definitions presented in this work that has setting
time of O(log N), then we have to use the
conventional constructive algorithm[Op71] which
has O(N log N) steps setting time. Of course, this
inherently, depends on kind of the application. For
example the Fast Fourier Transform (FFT)
computational algorithms uses perfect shuffle
interconnection pattern as an efficient execution for
the algorithm transformation on a parallel process.
The perfect shuffle interconnection pattern is
sufficient for executing the transform algorithms on
parallel processor. The entire processor repeats the
sequence; shuffle, multiply and transfer result back
to input network; Log N=n time steps to compute
FFT. We also can apply such MIN for polynomial
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evaluation, sorting and matrix transpostion.

We can estimaite the total computationl time
complexity according to following corollary.
Corollary:

If p is the percentage of the frequent usage for
arbitrary permutation functions which are included
in the previous mentioned theorems, and if £=100-p
is the percentage of the frequent usage of arbitrary
permutations not included in the listed
permutations (Section-4), then we may express the
total computational time complexity of our Benes
like network by the equation;

&£ O(N log N) + p O(log N);

Proof;

The proof is an immediate consequence of the
setting rules specified by the theorems of section-5,
which can yield a setting time of O(log N). Thus the
frequent occurance of this time is dominated by p
which has a bigger value while the time dominated
by & is proportional to the frequency of using other
permutation functions not listed in this paper,
which have been supposed to have low percentage of
occurance. 0

Fig. 3 shows such a comparision. Hence due to
our hypothesis, the value of u will nearlly be equal
to one(i.e., 100%), while the value of § is nearlly
equal to zero. But in order to see the exact behaviour
of the above factors we have computed the total
complexity time dominated as a function of p to see
the effect of using our mechanism in routing control
of Benes network for arbitrary permutation.

2,400F Total Complexity Time= £ O(N log N) + u O(log N)

1,600

800

01234567891011121314
LoggN=n
Fig. 3 »  The relation between the input size as; Logg N

and the total steps necessary for setting;
represented as total complexity time. &

6-Examples
In order to show, how shall we use the

mechanism expressed in this paper. We have
presented two examples representing how shall we
set the Benes IN according to a giveén manipulation
function using the above metioned mechanism.

The first example was to realize bit reversal
manipulation function, such that D(X(;"), where
j=n=3, hm,v=0, hence due to that,
p(X(;")=D(X(,"). Then to map the 8-word vector of
data, using Benes IN, and using Theorem 5 we may
have;

DX(*)=[MX(*)3, D1(X(,2), Da(X(,2), a(X(;?) °
A(X(;3)3]; as well as the v value of a(X(,%))g is zero,
then this mapping represents identity function
(according to theorem 1), also; according to sub
condition of theorem 5, by further partiotioning we
may have;

Di(X(Mp=0=[X(,?, PX(MNI=X(2), D11(X(, e,
D12(X ("0, I(X(,2)e2];

D11(X("No=a(X(;Do=1(X(,!) and
Di2X(;Mo=a(X(No=I(X(,)) ( This is due to
theorem 1 and 5).Then;
Da(X(H)y=2=[X(,?, p(X(, ]
D21(X(;"))1, D2a(X(, )1, I(X(,?)2);
Do1(X(,Mv=1=aX( N1 =n(X(,") and
Da2(X(,"My=1=a(X()1=n(X(,'); this is due to
theorem 1 and 5.

Hence the control setting for the Benes network
to realize bit reversal is shown in Fig. 4 due to the
above setting.

®2=[I(X(,),

X

L
1

L

Fig.4 The setting of Benes IN to realize it
reversal permutation function for
input=_8.for example-1

e

The second presented example is to realize for
example perfect shuffle mapping function using the
setting defined by theorem 4. It is well-known how
much this setting is difficult for normal MIN. As we
mentioned before in Def-7, that; if we set for n=3,
the parameters j=m=v=0, and h=1, then we have

€73



CEGM = dX(,");
this function).

Due to theorem 4 we may have;
CX (M =IMX()3, C1(X (Mo, Ca(X(;))4, a(X(*o°
AX(32l=
IAX ()3, C1(X(, ), C2(X(; ), MX(;*)2]; where;
CiX(Mo=IAX()2, CnX(Mo, Ci12X(Ne,
AMX(Mel=
X2, IXGD, XY, MX()el; this the
setting for the upper median switch.
CoX(Ma=NEX( D)2, CaX(o,
a(X(, M)z MX(H)2]=
X2, LX), m(X(M), n(X(") © MX(*)2); as
shown in Fig. 5. By this way of seeting we can be
able to realize any kind of permutation with a
complexiety depends on degree of n.

Caa(X(,))2,

Fig.5 The setting of Benes IN to realize perfect
shuffle permutation function for
input=38.for the second example.

7- Conclusion

In this paper we have presented a class of
multistage interconnection network based on Benes
rearraengeable MIN, which has been proved on its
capability to realize any kind of permutation
setting, but because there are difficult problems
facing the control algorithms for setting arbitrary
manipulation function, has made the usage of this
class of IN, narrow and very limited for only a small
degree of n, (n=logz N, N is the number of input
terminals). Hence, to use this class of MIN,
especially as an enhancement for the design of super
systems, it becomes important to increase the
mapping capabilities of Benes network to be very
efficient to use for parrallel computations. Hence we
have innovated a control algorithms to realize the
manipulations functions used mostly in parallel
computation. This mechanism can increase the
capabilities of Benes IN because the setting time is
proportional to degree of n, while the conventional
methods used setting algorithms proportional to N

times log N, which is rather very long for practical
use in parallel computers.

The mechanism we presented here, has been
depended on the symmetricality of Benes network.
This may add a constraints for implementing such
network on VLSI chips. Besides, the complexity of
the CU design increases a we add more theorems for
analyzing a more wide set of useful permutation
groups. Hence, it becomes necessary to design
rearrangeable MIN on another new criteria that do
not depend on symmetricality, i.e., without relaying
on Slephian-Duguid theorem[Bé&64]. We also have
been working on such problem, so that in coming
paper we will give another methodology to analyze
the rearreangeable IN’s, so that the applications of
such IN’s for reconfigurable architecture become
extensively, more practical.
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