HEB7 -7 27F4 111—4
(1995. 3. 10)

WHIEa—sDHDEEBRETESH
FTAYA AL NSV R
HIRIRIER., BTV« 28
Rit=EwIEKE
990z L H200%

AL, X XN (Interconnection Network) DIEFIAIBADSS AAS. & U R &85 &S 15
FIWTYXAIZDODVWTERELTWS, &, Y/ Uy s -Fa—7 bROD—IZH’ TV CCE (Cyclic
Cube Engine) &FERE RAEFIFHHETN EHRT 3. AL, 0=N"*""ML 33, 22T, ¢ ENI.

FhEN, HFEEFNEHEETILBEZROREANORERT. £/ hlZ25hZlogN ZH/=3F
BOBHTHD. RIC, COEFIVEANT, FEON—ZaF— 3% 0(hlog,N) OB TR
BETDEARVINOEI T4 o I7ATIUXAEEZS, hid. fROXFIEyT« 57N T
Y XA%E Accelerator EBERSHI—DDEETINTY XAICLYBHMT I EICLYERREND, £,
DFERICLIBERN. Taty HENSEROL LT, —HEA97E nonshared EFNICDWT, {EBD/X—3 2
F=2a IcHUTTRIEANICHZ CEMNTRENS, 512, ChEDFATYIAERNT, EED
NR=ZaF—2ga i@ LT RXXNDRAyF% O(hlog, N) DEBTRET 3 -00E:ELT 7

NITYXLEEBHELTNS,

Highly Parallel Computation Model for Setting Rearrangeable Type
Interconnection Network

ISSAM A. HAMID
Department of Information Design
; Tohoku University of Art & Design
200 Kamisakurada, Yamagata city 990 Japan

Abstract:
We have presented here, for the Control Unit(CU) of Benes Interconnection Network(IN), a new fast parallel
computational model named as; Cyclic Cube Engine (CCE), which depends on the Cyclic Cube topology, where
the total number of processing eléments is & such that &=N"""" J is an arbitrary integer, such that 2= h=<log N.
N is number of the data items consisting the permutation. We have presented on this model parallel algorithm for
parallel settings of Benes IN in order to realize arbitrary permutation with a setting time of O(h log, N); (assuming
is base 2) using & =N"""processors (i.e., ¥ ZN). This bound could be achieved by accelerating the parallel setting
algorithin by function call of another very fast algorithm named as the accelerator. Using these algorithms we have
constructed a fast parallel setting algorithm to set the switches of Benes IN for arbitrary permutation in parallel time
of O(/1 log,N) where is si<log, N. The parallel setting algorithm has been constructed depending on the CCE as' the
main computational structure suitable for setting Benes IN in parallel.
Index Terms: Complexity, Computational model, Graph theory, Rearrangeable interconnection network, Nonshared

memory system, parallel algorithm, parallel computations, supersystems.

1. Introduction

Generally, there are two groups of models for the parallel
architectures. The first group is concerned with the shared
memory model. The second model is ‘concerned with the

many processors with local memories, each .accessed

exclusively by one processor. The second group should
effectively be capable to permute data items among the
Processing Elements; PEs by high permutability
Interconnection Network(IN), which is the key feature for
such system{Na79][Na80]. We have concentrated on the
second group because, it is more practical to be
constructed in comparison with the first group’s model,

which has many drawbacks such as; memory conflict and

N-1 fanout per PE, (if incase N is the total number of
data items or PEs). But, in the second group’s model the
IN becomes the most important part to synthesize
powerful mappings. Typical Benes IN, consists of (2
log,N-1) stages. However for other type of INs such as
Omega which has ((N/2) log N) SWs, and Gamma IN
which has ((N/2) (log N+1)) SWs, it have almost the
same or less number of SWs in comparison to Benes IN.
But we should mention here that the mapping capability
of Omega are much less than Benes IN, because Omega
and Gamma or any type of IN of log N or (log N+1)
stages, belong to blocking type INs, which are able to
realize only specific group of permutations and cannot
realize all N! permutations. But Benes IN is not easy to
setup as the networks with O(N?) connections, (N is the
number of inputs). For example, the looping algorithm
[Op71][An77] sets sequentially, the SWs in the outer
most stages; i.e., the first stage and the last stage, (as
shown in Fig. 1), then sets the two upper and lower
center-stage subnetworks in turn, (this is due to the
recursive construction of Benes IN). As a result it runs in
O(N log,N) time, which is worse than O(N) setup time of

networks with O(N®) connections, (assuming N is base 2).

Hence, there is a parallel 'algorithm[‘NaSZ][NaBl] which
sets the N-input in O(log’ N) time. The main shortcoming
of this algorithm as well as the others[Le81]{Or87] is that
it requires O(N) processors with the high fanout of oY)
connections among them, because of using a shared
memory computation model. . Also, these previous
algorithms are time consuming and not suitable for
supersystems[Ha89]. Other = researchers have also,
approached the parallel realization to tackle this problem.
Their work was either very general computation model for
graph problems {Le81], or their algorithms[Na82][Ca87]
have not sufficiently reduced the setting time to O(h
log,N) to make this network efficiently approachable for
parallel computations. Our construction is different from
|Le81], because we do not depend on vertex coloring.
Also, different from Nassimi|Na82], because we use very
fast computational model with fast parallel permutation
algorithm giving us a setting time complexity of O(h
log,N).

Depending on such highly parallel permutation
algorithm(i.e., the accelerator) to permute N data items
between & PEs, we have also, constructed a parallel
setting algorithm to set the SWs of Benes IN to map
arbitrary permutation.

In this papér, Sec.1, has given the introduction. Sec.2,
has given the assumptions and notations. Sec.3, has
discussed a new computation model for the CU of Benes
IN named as Cyclic Cube Engine(CCE), which depends on
the Cyclié Cube IN given by [Pr&1]. Sec..4 has given a
parallel permutation algorithm named as accelerator,
depends on the radix-sort, implemented on the CCE.
Sec.5, ‘has discussed the realization of the parallel setting
of the SWs' of Benes IN and how the accelerator has been
used to set Benes' SWs for arbitrary permutation. Sec.6
has devoted for the conclusions.

Reverse s

Heimj Shuffle

w=4

Browm—1
‘=Straight Co =Cross Conn
nnection; ection

Fig. } . Benes Interconnection Network; (Bin=3)). for =8,

2. Assumptions and Notations

The following assumptions and useful characteristics are

used throughout this paper:

(1) Each Processing Element; PE(i) has three registers, ;7
(), y (i), s# (), which comrespond to that PE, and
enough memory to hold one record; R(#), (this includes
also, the field F(i)).

(2) The distinction between null and a record in a PE is

possible, and one bit tag could be used.

(3) (=) represents an assignment, (*—) represents the
connection and routing of two neighboring processors
(has one unit route O(1)), and (N) represents an
exchange connection and has - O(1) if two way
transmission is allowed.

(4) iy, represents the bit ,‘ of the binary representation of
i. Consequently, the PEs can be selected according to
the mask specified by the bit ,. When no mask is used
all PEs are enabled, (instructions are executed only on
enabled PEs.).

(5) iy, . represents the complementary of bit , of the
binary representation of i.

6y i") represents the selected bits, of the binary
representation of i starting from bit , to bit ., i.e., i 4

S :

%) Thé con;plexily of the algorithm has been measured in
terms of the number of unit routes needed to execute it,
assuming for simplicity that the arithmetic operations
performed locally at each PE are executed in O(1) time.

(8) Every processing element, PE(i) in our evaluation
represents a module, which contains an operand register,
a field memory locations, and basic arithmetic and
logical capabilities.

(9) The computation model is a nonshared memory model

of an SIMD type (Single Instruction Multiple Data)

machine, i.e., all instructions and data are loaded to a

number of PEs which communicate between each other

through a cyclic cube topology.

2. The sisuciire of the Cyclic Cube Engine computational mocdel.

3. The Cyclic Cube Engine (CCE)

The computation model used in our work is a nonshared
memory model. All instructions and data are loaded to a
specific number of processors which communicate through
both cubic and cyclic configuration. The construction of
CCE has been depended on the characteristics of cyclic
cube computer(CCC) given previously by Preparata[Pr81].
The topological characteristics of CCE have been extracted
from CCC[Pr81].

The CCE, is a network of xdenncal processing elements,
as shown in Fig. 2, where each Processor Element (PE(i))

" contains an operand register, a field memory locations, and
basic arithmetic and logical capabilities.

Let N be the number of input or the element of a
permutation, as base 2, i.e., N=2. R(i) represents a record
located in PE(i), and F(J) represents the record's field. Let
for some k such that, 2°Z n .and, 1= k= n. Then each
PE(i) has n+k-bit address F(i) expressed as (x,y) of
integers, where x has n bits length (0= x<2"), and y has k
bits length (0= y<2Y), such that; x 2° +y=R(j), where R(/)
represents the address of PE(i), whereas, 0= R(/)<2"",
N=2", and the number of &. processor elements; (PEs)
consisting CCE is; & =2""=N""", where h =Nn/kN,
{where N..N, represents the ceiling function,) such that, 2*
2n. Each PE has (n+Kk) bit address R(7) expressed as (x,y)
of integers. Due to Fig. 2 each PE has rhree
interconnection ports:

Next(x,y) is connected to Before(x, (y+1) mod 2°),
Before(x,y) is connected to Next(x, (y— Hmod 2*), and
Cycle(x,y) is connected to Cycle(x+Y. 2", y), where Y=(1
—2 x,). (Where mod; represents the modulus calculation.).
Recall that x, is defined according to Sec.2, assumption 4.

The ports Next and Before are within the cycles. While
the ports Cycle is between cycles which being connected
as the cube configuration (Fig. 2).

It was mentioned in the appendix of [Pr81] that CCE can
emulate Benes IN-in time of O(log N), if in.condition that
the permutation is precomputed. However, this statement
gives us the hint to choose CCE as the main
computational model for the CU of Benes IN..

3.1. Partitioning CCE into 2"-Group-Cycles

Let us observe in this section the binary representation
for the addresses of the PEs which consisted the CCE. We
have tabulated the addresses of the PEs of the CCE model
by a two dimensional table (as shown in Fig. 3). Every
row represents the PEs' addresses for a cycle. While
columns represents the addresses of PE of 2" PEs per
columns for the n-Cube between n-Cycles, such that every
column represents one dimension related to the cube
configuration. For example, the first column (col 0) has
PEs of addresses, (PE(0), PE(4), PE(8), PE(16)), which
represents the horizontal connections between cycles of the
CCE (See Fig. 2). Each individual PE at one column are
different from the PE at the neighbor column by a
Hammming distance of one because they are in one cycle.
We can see from" Fig. 2, and Fig. 3, that the second
column represents the vertical connection between cycles.
The third column represents the diagonal connection
between cycles. While the forth column has no specific
connection between cycles but within the cycles. This
column works as a supporting element or auxiliary
memory ‘for records processed in the individual cycles.

We can observe also from the binary representation of
every column as shown in Fig. 3, the following
characteristics, which are useful for the algorithms
derivation. The k low significant bits for all PEs of every
column are equal while they are different in their n most
significant bits. In contrast, all PEs of every row have
equal n most significant bits and different k most
significant bits. Due to these observations we can
partition CCE into obstructed groups. Such an
obstruction can be done according to the table’s rows, i.e.,
the CCE's cycles. Therefore, due to this partitioning
concept we define, the 7"-«mup-cycles, according to the
following definition.

Definition 1

2"-group-cycles, is as a sequence of PEs (h=[n/k), 0=h

=<n) of 2" consecutive rows or cycles. Each column of
this group is a 2"-groups of PEs. All addresses indices in
2" group-cycles have the same h" MSB (Most Significant
Bit) of the /1 MSBs, and all other indices varies in only the
other LSBs of the binary representation of PE. I

For example, if =2, then the 2™ MSB of the h=2 MSBs,
is the fourth bit i.e., 2"bit=fourth bit, which is the
dominated partitioning bit such that we can have two
groups of rows. The first four rows has the fourth bit of 0,
and the other four groups has the fourth bitof 1. In the
same way, we can have four groups of 2" -group-cycles,
of which the bit, (n+k — 2)=3" MSB; is either 0 or 1.
Such partitioning assists us to construct our algorithms,
as will be shown later. '

4. The Parallel Permutation Algorithm- (The
Accelerator))

We discuss here, the parallel permutation algorithm
depending on a parallel form of radix-sort algorithm{Pr78],
and then implementing it using the CCE given in Sec.3.
Please note that, in this paper the setting time for this
type of network is proven to be within the lower bound
which is shown to be proportional with the propagation
delay of Benes IN itself, (i.e., O(log,N)). However, here,
we primarily concem with the development of efficient
algorithms to sort and permute data on nonshared memory
model, i.e., the cyclic cube engine, given in Sec.3. For
the both problems (i.e., sorting and permutation), we
assume that; there are N=2"records. Initially, record R(i)
is in PE(J), 0= i<N. Each record has a field F(i). The
field corresponds to one record into own processor' s
memory.

We develop an algorithm to perform arbitrary permutation
in O(l log N) time on the CCE when ¢ =N"™"" PEs with
a connection of degree three per processor (i.e., € =3). In
fact, the algorithm to determine switch settings is almost
identical to the permutation algorithm. For the
permutation problem, F(H€ {0, N— 1], 0= i<N, and
record 7 is to be relocated to PE(F(i)), 0=i<N. However,
N records can be permuted on O(/) time using the Shared
Memory Model(SMM), and N PEs[Hi77] [Pr78]). PE(®)
first writes its record into location F(i) of the common
memory and then reads back the record in location i.
However, the SMM is very difficult (if not impossible)
to be implemented on VLSI, because N— | fanout
connection per PEs is needed for construction[Pr78].

Also, the fact remains that no actual PEs array have been
built that are based on the SMM because, it is not feasible
to allow & processor to access & memory addresses,
simultaneously. Therefore, the more realistic assumption
is that each processor has its own private memory and PE
can access data through an IN (e.g., CCE). In general, a
parallel model is reasonable if the number of PEs each PE
can communicate with is bounded by a constant{Go82] as
is the case with the CCE. We have shown through the
parallel algorithm that the CCE, is superior for the
parallel permutation algorithm that is useful for the
parallel setting algorithm for the CU of Benes IN.

Our algorithms in this section have a new nonshared
computational model represented by the CCE. These fast
algorithms require O(h log N) time on a model of @
=(2""PEs which has a cyclic cube topology, and capable

to realize arbitrary permutation, as will be explained here
after. Please note that & =N (i.e., D =N"*Y") therefore
the number of ® PEs are tolerable to N, i.e. , every PE
may process only one record and, N should always match
the & PEs, such that to not let more than one record
applied to one processor.

4.1. The construction of the Parallel
Permutation Algorithm

This section consists from three subsections. One
represents an informal description with an example, the
other gives the formal details for that construction, and the
third, represents the analysis of these algorithms,

Our permutation algorithm is a parallel version of MSD
(Most Significant Digit) radix sort. The radix=2", Then
[n/k7 digits of F(i) are used. The following rules
corresponds to how to obtain the MSD radix digits.

1) The binary representation of F(i) is obtained.

2) The k MSB yield the MSD (Most Significant Digit).
3) The next to the k bits give the next digit and so on.
For 0 = i<xN, 2"=N, R(i) represents record which is
initially located in PE(i). F(i) represents a field in record
R(). (F(O),....... F(N— 1)) define a permutation of
(0,....N— 1). Recall that, F(i) is related to the
permutation element i, and R(J) is related to a record in
PE(i). The records are to be permuted so that following the
permutation, R(J) is in PE(F(#)). This permutation is to be
performed on the parallel computation model of & =
N"#9™¥ pEg, connected as cyclic cube topology where,
h=[n/k7, 1=k<n, n=log, N.

4.1.1. The Formal Description

The language construct for each j: (cond j) pardo (action)
odpar, which has been used in the algorithin construction
of this paper, indicates that all instructions {action)
corresponding to values of j satisfying (cond j) can be
performed simultaneously[Hi86). However, it is Algol-
like language. Please note that due to Sec.3, each PE of
the CCE is basically counts up time at each time unit
(numbered 1) it tests a simple logical condition involving
x,y, and t. Depending on this test either it does nothing or
it exchanges operands or it exchanges operands and
performs an operation on them. The algorithm performs a
sequence of basic operations on a pairs of data that are
successively, 2" !, 27 % 2%1 locations apart. The
execution of an operation for all operands in a cycle of
CCE requires 2" time units (i.e., the length of the cycle in
CCE). This computation can be pipelined (overlapped)
with the analogous operation for any i, k= i<n+k.

The algorithm makes the records in each group-cycles to
be leveled and gathered in parallel using CCE of N*/"
PEs. The leveling of a record in a 2"-group-cycles
represents the number of the records preceding it in that
group. Therefore, the procedure LEVEL, shown in Fig. §,
which works recursively determines this number for each
record in every group of the group-cycles, in parallel. 1t

divides a 2"-group-cycles into two 2" ‘-group-cycles. If
L(i) is the level of a record (if any) in PE(J) and stored in
its register 2 (i). Also, X (i) is the total number of
records in the 2"~ '- group-cycles containing PE(i) and
stored in its register y (/). Then the level of a recordin a
2"—group-cycles is L(J) if i,_ (=0, (note that i,_, =0 for the
upper 2" ! of a 2"-group-cycles, in Fig.3 and Fig.4.), or
L(D+ = (iyy—yy), if - =1, (Where = (i) represents the total
number of records in the 2" '-group-cycles including
PE(i), and L(i) is the level of the record in the register

(i) of the PE(i), (if any) within the 2" '-group-cycle.)
Then, unfolding the recursion yields the iterative procedure
LEVEL. We can see that LEVEL uses O() PE time and
exactly I unit routes. After leveling the records the
procedure GATHER shown in Fig. 6, gathers the records
within each 2"-group-cycles, such that they are moved to
consecutive PEs. Let L(i) be such that the record (if any)
in PE() is be re-located to the R(i)" PE in the 2"-group-
cycles. GATHER is achieved by first re-locating all
records in the group-cycles to PEs such that the PE indices
and L(/) agree in bits 0 and 1; and so on until records have
been routed to the comrect PE. Fig. 5, shows the formal
recursive construction of the algorithm named by the
procedure LEVEL . Whereas, Fig. 6, shows the procedure
GATHER(h).

The re-locations of records between PEs may cause that,
some PEs' record be over written by the others, such that
we may have what is called as collision in PE(i) whose
records may be overwritten by incoming record from PE(i,
4). But, in our construction we do not have such an
action. In order to prove this claim, let us consider for
instance, the PE(iI) and PE(i2), which are in the same
2"-group-cycles. Hence, leveling these records using ‘the
algorithm of Fig.5, we may have; | L()—L3U2y|<|il—

i2], if the records of those PEs are overwritten by -the
record of; for instance, PE(i3) then; i3=(il(™™' NN
LGICT = (20"), LG2("), this implies, 2% >

| il—i2|, and | LG — L(2) |=2"*, therefore, | L(il)—

LG22} >| il— i2 |, which contradicts with the earlier
inequality. Therefore our claim is satisfied.

The total realization of the parallel permutation is shown
in Fig. 7, which shows the algorithm named as the
procedure PARALLEL-PERMUTATIONM,h), that works
to accelerate the parallel setting's algorithm of Benes IN
givenin Sec.3. Fig. 7, represents the total realization of
the parallel algorithm performed in Nn/AN passes. The
routing in each . pass is done in parallel at each
2"-group-cycles. note that, at each pass there is only one
record per row. As shown in Fig. 7, at first the algorithm
works to re-locate R(i), in the pass; for instance p to
column o (i), where o (i) =F(i("",)) such that, h=n—(p—

Dk, and I=max(h— k,0). Therefore, at first the record in
each row is replicated over all PEs in that row, and then
deleted except for the one in the proper row.

5. Parallel Setting Algorithm for Benes IN.

In this section we will represent the main parallel setting
algorithms of Benes IN' s realization algorithms
constructed on CCE model of Sec.3, and accelerated by
parallel permutation algorithm given in Sec.4. It should
be noted here, that there is a parallel setting algorithm for
Benes IN[Na80}{Nag1], implemented on Mesh connected
computer with a setting time of complexity of O((log'N)),
assuming N=& . This bound is because of using the
Batcher sorting algorithm whose complexity is of O((log
N)z), to permute the data between & PEs.

5.1. Notations and Characteristics

We have presented here characteristics and realizations
concerning with rearrangeable Benes IN; as following:

(1) Let Il (/)= represents arbitrary permutation of N
elements such that; =(0,1,...N— 1), where 0= i, j<N,
assuming N is base 2, i.e., N=2". (Note that, the small
brackets; (....), represents an ordered set of elements.)
Therefore IT(n) means the permutation as a function of n.

For instance, i=(0,1,2,3,4,5,6,7), j=(0,2,4,6,1,3,5,7),

represents the perfect shuffle permutation.
Hence, for 11(0)=0, TT(1)=2, 11(2)=4, and so on. Also, let
the inverse of this permutation be represented as V(11 (i) =
V(j)=i. ;
(2) According to the recursive structure of Benes
IN[Wa681[Op71], Il (n) can be divided into two parts of
subpermutations. 11 p(n— 1) represents the upper
subpermutation of 0= i,j<N/2, at the input of the upper
middle stage, named as By(n— 1), of Benes IN; B(n).
Also, the I gw(n— 1) represents the lower
subpermutation of 0= i,j<N/2, at the input of the lower
middle stage, named as B,,w(n— 1) of the B(n) as shown
in Fig.1.
(3) As has been presented by [Le81][Na82] we have also
represented the required permutation; I1 (n) by ‘an
undirected graph; G(IT (n)). We have represented here,
every SW of B(n) IN as a vertex, while the edges represent
connections between these vertices according to the
required permutation. Consequently, we have two disjoint
set of vertices. One represents the vertices corresponding
to the input stage, i.e., first stage.

4) From the bipartite graph we can find subpermutation
named as; complete- subpermutation-group which is
defined by definition-2 below:

Definition 2
A Complete-Subpermutation-Group (CSpG), represents

a cyclic path from vertex I'n/ k’] with its edge connected
to other disjoint vertex and so on till it return back to the
same vertex [n/k7]. M

Knowing these CSpGs' we can find in parallel the
switching states of the first and last stages, besides, the
permutation of middle upper stages IT (,(n— 1), and the
permutation of middle lower stages [I,,y(n— 1), of Benes
IN, as will be shown later. Please note that the CSpGs' ,
represents sets of items which are a subpermutation
groups of the original permutation.

(5) Let us define A (w, €), as the function' s state of the
SW; ¢ of the stage; @ . Hence, the parameter w
corresponds to the stage number, where 0= w <2n—2, and
the parameter ¢ corresponds to the switch ¢, where 0=
¢ <N/2. A(w, ¢) has only one of the two values, which
represents either 0, or 1. The value 0 or 1 represents
respectively, the setting of an SW to straight or cross.

(6) Let Hp(i/2) represents a subpermutation of I1 (i)
which come from the output of the upper middle stage
By (n— 1) of B(n). For example for the perfect shuffle
permutation, the Hyp(i/2) =(0,3,4,7) which represents a
subpermutation of the output permutation 1l (i), which
come from the output of the Bp(n—1); see Fig. 1. It is
interesting to note that Hep(i/2) has the following
characteristics, which are related to B(n) construction: 0 €
Hyp(i/2), Hyp(i/2)I=N/2, and if i;, i, € Hyp(i/2),

where i, I, then i, ¥ (i,),0, and V(i)# (V(i;))y, note that
V(i) represents V(11 (i)). However, the set Hyp(#) defines a
complete matching on the bipartite graph, G(II (). In
fact the set Hyp(i/2), gives us enough useful information
about the switch settings for stages 0 and 2n—2, I1yp(n—
1), and Il \yw(n— 1) using the following rules: If i€
Hyp(i/2) then; (1) A 20—2, 2= 1, (2) A O V()2)=
V(o 3 1 V2= i, @ 1
Low(N/2HV(i)/2))=N/2+(11 (V(i),p))/2. (Please note that all
divisions are integer division, i.e., [n/k7.) These rules
are related to the characteristics of the shuffle and reverse
shuttle topologies' connection at the first and last stage of
B(n) IN, respectively.

5.2. The Construction of The Parallel
Algorithm for Benes IN

We have seen that the set Hyp(i/2), are useful to find the
Benes IN' s SWs' setting. In result, we would like to
find a fast parallel method to find Hy,(i/2).

A) The first step in the parallel algorithm, is to detect the
CSpG, which is defined above as a cyclic path from and
into again a certain vertex(Def.2). Therefore ;he procedure;
SUBPERMUTATION- GROUP shown in Fig. 8,
performs this task by finding the subpermutation-groups,
which represent the components of the CSpG. Please
note that, if C represents a certain Subpermutation-
Group(SpG); resulted from the execution of procedure
SUBPERMUTATION-GROUP, then C has the following
characteristics: (1) If i€ C, then {;,,NC. (2)If C;, and C,
are SpGs’ , such that; i€C,, and i;o€ C,, then C, U C,
(U denotes the union), represents a CSpG of the
permutation graph; G(11 (i)). (3) IC|I =IC,l if i€C,, then
ip€C,and i€ C,, then i, €C,. Note that this algorithm
works on the computational model presented in Sec. 3,
where PEs in a 2"-group-cycles, are linked together using
a field F(i), (recall F(i) is the link field in PE(})). As has
been presented in Sec.4.2, an arbitrary permutation is,
initially distributed over <> PEs, such that every record is
in one cycle of the CCE model. Therefore, the record j is
in PE(i) of the cycle; i, and 0=i<N of the CCE. If j&€
[t (/) then for some j'€ IT (i) such that; j=IT (V(D)),

note that V(II ())=V()=i. Therefore, applying the
algorithm of Fig. 8, we have for instance, j and j'be in
different SpGs’, and j and. (j),, are in the same SpGs’.

The time complexity of SUBPERMUTATION-GROUP
algorithm is of O(k), which represents the parallel
computation time within the cycles of 2" PEs of the CCE.
This algorithm is constructed such that it uses the direct
connection of O(I)' communication time, for data. transfer
between the PEs of CCE. Moreover, the loop operations
between the & PEs in.the cycles of the CCE, take a time
of O(k), where 2" represents the number of PEs in a cycle;
(Sec.2). Fig. 9 give an example of how this algorithm
works for instance, for the perfect shuffle permutation
whose the SpGs’ determined by the above procedure are;
0,3), (4.7), (1,2), (5,6).

(B) The second step is to find Hyp(i/2) and Hyw(i/2)
from the SpGs', which ate determined by the procedure
SUBPERMUTATION-GROUP, in parallel. Here, these
groups are localized to. 2"-group-cycles, (defined in
Sec.3.1). Therefore, the procedure DIMINUTION(h)'s
algorithm shown in Fig. 10, diminish the permutation [l
(i) represented by the SpGs', such that to determine D(i);
which represents the minimum integer in the
subpermutation-group (containing i, 0= i<N). This
procedure takes in use the direct connection of CCE.
Hence, after for instance the iteration ¢ of the for loop,
the register 2 which contains the field F(i) points to the
register 2 of other PE at distance 2" *!, (please note that,
the distance is measured along the subpermutation-group,
mapped on the cycles of CCE(i.e., the 2" group-cycles)).
Therefore, completing all the iterations till ¢ =h— 1, we
may have D(i), be as the minimum integer of the CSpG
that also contain i. Using the same example of the
perfect shuffle permutation, the set of subpermutation-
group, will be mapped onto 2" '-group—cycjles, of CCE,
such that every subpermutation-group is on one 2" L
group-cycles.. Due to Sec.4, we have (for our examplc)
four groups of group-cycles, such that every
subpermutation-group is mapped on onc group-cycle.
Operate all groups of the group-cycle, in parallel to
determine Hyp(i/2)=(0,3,4,7). It is obvious that execution
time is proportional to the partitioning time of the
group-cycle, i.e., Oh).

(C) This is the complete algorithm named as the
procedure PARALLEL-MAP-SETTING(N,h,k), which
calls the procedures presented above as A and B, as shown
in Fig. 11." At each iteration the setting of -the first and
last stages of all B(h) Benes subnetworks of B(n) is
determined in" parallel. Let us apply the procedure
PARALLEL-MAP-SETTING of Fig. 11 to set Benes IN
shown in Fig. 1, for the perfect shuffle permutation. As
well as N=8, and N=3, therefore for =3, and the setting of
the first stage; w =0, such that, A (v =0, Ni/2N)=2
(0,00=0, A (0,1)=0, & (0,2)=1, A (0,3)=1. Also, A (w
=2n—2, Ni2N)=A (4,0)=0, A (4,1)=0,

A(4,2)=0, A4,3)=1. In addition, ITp(Ni/2N)=(0,2,1,3),

11 w(Ni/2N)=(5,7,4,6), These results are computed in
parallel using the CCE' s cycles. From the sub
permutations T p(Ni/2N) and IT,w(Ni/2N) of the middle
stages, we may have the permutation;

[/ 21+ ow([7727) =(0.2,1,3,5.7,4,6) as the
input to the Benes IN of B(n— 1)=B(2), i.e., h=2. Repeat
the same procedure for =2, we may have the following
SpGs, (0,3), (1,2), (4,1, (5,6), determined by the
procedure SUBPERMUTATION-GROUP (as shown in
Fig. 9). Also, by the procedure DIMINUTION(W), we
may have Hep([i/27)=(0,3,47. Also, in the same
way, A(w=1, [i/27=A(1,0=0, A(1,D)=1, A (1,2)=1,
A(1,3)=0. Also, A 3,0)=0, A 3,D=1, & 3,2)=0, &
(3,3)=1. Moreover, Il u,(l'"/k'\)=(0,1,3,2), T ;0w
(Tn/k7)= (54,6,7). Therefore the permutation which is
on the input of Benes IN of B(l) is at the stage; @ =2,
which is only one stage. Therefore, A(w=2, [/27)=4
2,00=0, A2,D=1, A (2,2)=1, A(2,3)=0. Fig. 1, shows
these settings for the perfect shuffle permutation on the
Benes IN. Note that the rules (3) and, (4) are to be
interpreted as being carried out on each 2" group-cycles or
equivalently for each B(h) networks of Benes IN.

Please note that the statement denoted on Flg 11,
represents how to achieve the rule (3) and (4) of Sec.5.1.
Whereas a division by 2 requires us to shift bits A—1,...1
one position right and defines the new bit (h— 1) to be
zero. Also, adding 2" ' requires changing bit h—1 to 1.
Therefore, the statements; 3 and 4 on Fig. 11, implement
the rules (3) and (4) for each B(/) network. If the least
element in a CSpG, is even then all elements in that class
must be routed through the upper B(h— 1) network. The
statements ¢ is executed on PEs whose register 3 (i) is
zero. In this statement the SW's settings for the first
stage of all B(h) networks are determined by the rule (2). .
When h=1, then B(l) networks have only. one stage, and
then the statement d terminates the operation. But when
h# 1, the SWs settings for the last stage of all B(h)
networks are determined by the statement e.

procedure LEVEL(h. k)
comment wake the records. for cach group of PEs. Recall that.), ¥ (i), and p
(4 represent the registers of PEG). such that. LOidin vegister (), S i
n oy l
global integer arvay F. LU, Gk
L=,
if Fiy*null then y (S(H=1 clse y (Z(H=0;
do foreach p:=h io n+k—1x
begin
pardo gty @)=y (D)
ifipg=l then L= (LD) + (i
A=y (S i)
odpar:
end ;
end LEVEL;

Fig. § , The algorithm for the procedure LEVEL(n0K B).

-31

Procedure GATHER(h.k 1)
Acc toLd)
s R(d to the PEs;
global integer array ‘RUi), LG%
comment F(i) is the ficld of the record R(¥;
do foreach §=hto n+k—h
if Fiy#noull, and 3 (LIDY*i g then
begin
pardo (Reiy 4, LUy M—(ROLOD):
odpar,
end;
end GATHER;

r -edi

d by p

LEVEL. relocate the record

Fig. 6 , The algorithm for the procedure GATHER(n,k.h). -

procedure PARALLEL- -PERMUTATION (k.1
comment On CCE of 2n+ kPEs, the parallel pcrmulanon of 2n rcmuls according 10
the field F(3 of the record R(3. can be done;
global integer armay R(d. L4k
begin
if ik #0 then Fui):=null;
commerit initialize the remaining columns:
b=
comment the number of column in a 2h-group-cycles. is 20
for p=\ until Wk :
comment pisapassof nfk passes of radix sort algorithm:
pardo for each ¢ =0to k: '
comment copy records aver columns: a
pardo if ¥(iy*null then Ruiy ¢)»—Ru):
odpar:
odpar;
E=maxth— k0):
camment bits, h—1 Iomm the digit:] L‘)
if if2n FFAb— 1) then
Fuy=nmull else Fiiy:=Fi):
call LEVEL(hk.n):
Bdaiy=g A+ if2n
call GATHERb.k.ny:
g=h: b=l
comment Fach pantition is 2-group-cycles columas;
end
comment relocate records to the first column:

begin
e

20

pardo for cach $=0to g—1;
i F(d = null then Ridy g)+-Ruiy
odpar.
cnd:
end
end PARALLEL-PERMUTATION

Fig. 7. Thealgorithm for the procedure PARALLEL- PERMUTATION® k.h).

procedure SUBPERMUTATION-GROUP:

find the subp which rep the suby group;
global integer array ¥y, T1(i. Vi)
BFy:=(Ty
comment assign the register g () which contains the field Fti) with the value (11
o :

B Fliyon — B

call PARALLEL-PERMUTATION®. k. &y
CVEIR), BRI o= T BUE) G
end SUBPERMUTATION-GROUP

Fig. 8 . The algorithm for the procedure SUBPERMUTATION-GROUP.
6. Conclusions
The construction of the control unit of DBenes

interconnection network, appears to be highly sequential
in nature, through the controlling algorithms presented by

[Op711{An77}[Na79][Ca87], but it can be parallelized
using efficient model like the CCE model presented in this
paper. This bound could be achieved by using an
accelerator which can realize the parallel permutation
problem in time of O(hlog;N), on the CCE parallel
processor model of &=N"*"" PEs (i.e., ®>N), where h is
arbitrary, and 2= h<log N. In[Ha89] we have examined
the lower bound when & =<N. We have given here, a fast
algorithm for the same problem when & =N""?, such
that each item is assigned per PE. That algorithm has a
bound of & (/rlog N). The strength of such an algorithms
comes from its ability to efficiently permute data sending
them to the location where the next processing step will
occur. ‘Therefore, according to these algorithms we have
constructed parallel setting algorithms which can set the
switches of Benes IN in parallel time of O(h log N), in
order to realize arbitrary permutation. This bound for
setting Benes IN is a new bound that can make such
network more practical for parallel computers.

procedure DIMINUTION by

this p diswi the 1(H 10 find out the mininum ele

ment in every subpermutation:
global interger array F(d. DGix integer amay g (B, y (b
begin:
" Div=i
parado foreach =010 h—1
comment works in parallel on all 28~ b group-cycles
¥ G~ 5 (Etivy g
comment this assign F(d=j during iteration’ § =0, F(jn)=iyn. therefore' y (F(jyn
=i '
call PARALLEL-PERMUTATION b
LGy G0 BUFEy () - = XA SR e
DXiv=minl XD, e (d):
odpar:
end DIMINUTION

Fig. 10 . The algorithm for the procedure DIMINUTION(h.

provedure. PARALLEL-MAP-SETTING(w. b ky:
conunutet paratiel algovithim for setting Benes IN:

global intcger ammay THO: — 1. D00: ~— D, Vie: -1,
A2 -2, 0 /2)—1x
begin
REPEAT: for Ir=n 101 sicp ~1
bogin

w=n—h
call SUBPERMUTATIONb):
call DIMINUTIOMbY;
comument for permutation TH(d=j if jE e #2). then Dtin=0;
DXY:=DAi ok
call PARALLEL-PERMUTATION h):
camment this means 3 (V(in=— IXi):
SOVENDN Y — VDI
conument setting of the first stage: 3 <
i p=0then w=igand Aw. #2 =i else Aw. ¥2 yr=A(™.00)

ifl=1 then exit: 3 d
conuncat assign the last stage: *
WX N=0 then y (M 2—w. ¥2 W—ig 1e

ccomment Updates 110i) such that it carresponds to the [lypth=1) if it is even:
i B F D then po (TG =— ot Ity .
2O Mg — g eeensipdip — 1 oooipd=— e (R1COY ,R

-
comumnent routes the 1) to Plis whose index corresponas to the rules |. and
THy=in =1 g uDUiE =1)y b
et .
Lo10 REPEAT:

ond PARALLEL-MAP-SETTING

Fig, 11 . The algotithm for the procedure PARALLEL-MAP-SETTING(h. k n).

REFERENCES: o

[An77] Andresen, S., “The looping algorithm
extended to base 2' rearreangeable switching networks,”
IEEE Trans. Commu. vol. Com-225, pp. 1057-1063,
Oct. 1977.

[Ca87] Carpinelli, J.D., Oruc, A.Y., “Paralle! set-up
algorithms for Clos networks using a tree-connected
computer,” Second Int. Conf. on Supercomputing,
pp.321-327, vol.1, May, 1987.

[Kn72] = Knuth, D.E., The art of computer
programming-Volume 1/ Fundamental Algorithms,
Addison-Wesley Publishing company, 1972,
(pp-104-108).

[Ha89] Hamid, LA., etal, "A new fast parallel
computation model for setting Benes Rearrangeable
interconnection network,” Trans., IEICE, vol.E72,
No.4, April, 1989, pp.393-403.

[Hi86] Hillis, D., The connection Machine, MIT
press, Camdridge, Massachusetts, 1986. -

[Le81] Lev, G.F, et al., “A fast parallel algorithm
for routing in permutation networks,” IEEE Trans.
Comput. vol. C-30, pp. 93-100, Feb., 1981.

[Na82] Nassimi,D., et.al., “Parallel algorithms to
sctup the Benes permutation network,” IEEE Trans.
Comput. vol. C-31, pp. 148-154, Feb., 1982.

[Na81] Nassimi, D.et. al., " A self-routing Benes
network and parailel permutation algorithms,” IEEE
Trans. Comput. vol C-30, pp. 332-340, May 1981.
[Na80] Nassimi, D. et. al., "“An optimal routing
algorithm for mesh connected parallel computers,”
JACM, vol. 27., No.1, pp.6-29. 1980.

[Na79] Nassimi, D. et. al.,, “Bitonic sort on a mesh
connected parallel computer,” IEEE Trans. Coniput. vol.
C-27, pp. 2-7, Jani. 1979.

[Op71] Opferman, D.C., et.al., “On a class of
rearrangeable switching networks,” Bell System Tech. J.
vol. 50, pp. 1579-1600, May-Junie 1971.

[Or87] Oruc, A.Y., et.al., "Programming cellular
permutation networks through decomposition of
symmetric groups,” IEEE Trans. Comput. vol. C-36,
No.7, pp. 802-809, July, 1987.

[Pr78] Preparata, F.P., “New parallel-sorting
schemes,” IEEE Trans. Comput. C-27, pp. 669-673,
July, 1978.

{Pr81] Preparata, F.P., Vuillemin, J., "The
cube-connected cycles: A versatile network for parallel
computation,” CACM, pp. 300-309, May, 1981,

