HERT -7 275+ 108—2
(1994. 10. 27)

Autoscheduling in a Distributed
Shared-Memory Environment ?

José E. Moreiral Constantine D. Polychronopoulos! Akira FUKUDA!?
{moreira,cdp} @csrd.uiuc.edu fukuda@is.aist-nara.ac.jp

t Center for Supercomputing Research and Development
and Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
1308 W. Main St. Urbana, IL 61801-2307 - USA

1 Graduate School of Information Science
Nara Institute of Science and Technology
8916-5 Takayama Ikoma Nara 630-02, Japan

Abstract

The ease of programming and compiling for the shared memory multiprocessor model, coupled with the
scalability and cost advantages of distributed memory computers, give an obvious appeal to distributed shared
memory architectures. In this paper we discuss the design and implementation issues of a dynamic data man-
agement and scheduling environment for distributed shared memory architectures. Unlike the predominantly
static approaches used on distributed and message passing machines, we advocate the advantages of dynamic
resource allocation, especially in the case of multi-user environments. We propose hybrid data and work distri-
bution techniques that adjust to variations in the physical partition, achieving better load balance than purely
static schemes. We present the architecture of our execution environment and discuss implementation details
of some of the critical components. Preliminary results using benchmarks of representative execution profiles
support our main thesis: With minimal control, the load balancing and resource utilization advantages offered
by dynamic methods often outweigh the disadvantage of increased memory latency stemming from slightly
compromised data locality, and perhaps additional run-time overhead.

SR AT) BISPRIETER O
HEjA XV a—) V7 Fk
Va¥E ELSt arARF¥UFUD. RYIO/E=-FA fEH R
Ct A=t—a v Vo — SRR ¥ — ARSI '
1) 7 AKRETNINF - Vv v RA UK
1308 W. Main St. Urbana, IL 61801-2307 — USA
1 FEERPHFERMTRFERKE

1EEEL Fse R
= RIEABTTEILET 8916-5
. Abstract

FEIE AT VET %7 7 F v OBNIE, AT IRIBFFEBORA Y-S F 4122 - 872 —< >
ADREITMA T, F AT YVEEHEHEBTET L TOEF T OS5 I U7 2BFULIT A FOBES S h b, £
CTARMTI, SHRE AT VET X7 7 F v 10652, BIfAT — Y EBR, A7 Va—Y vy FEEOESeE
FEE Vo MBI OVTERTL, Ay E—IU Ny D 7 RIBFISHEE TR, 8% 77 O —F2EENICE VIS,
CITEAL., BNV FI—F —-BEOHEIZ, BIHY) V- ABEEIEDNTHAI L2 EET S, 0 0. Bk
FELD, SVEFSHAEOIL, WRTHOBLC LSRG, NAT Vo FEF—F ey R ID5EF 2=y &
FRETEDOTHE, T, ETREDT—FF 7 Fv%2RL, 2 UF 4 ANGHEREZO—BOEZIIOVTEL
(iR D . WRIBET7O7 7 AVERORY F7—2 - FA P 2 AV FHERTIE, R4AORETLIFEDE
WHEATRENT VS, THHL, B X 2BFENL 220 TEMIEE)V — AOEF A L v I F A,
K%@gfgﬁ}%ﬁﬁﬁ# B4 LB @EEREDEIN, &5 VIEETRORIME L L — N =~y FtvolzREx, +5
WHWED BB,

! This work was supported by the Office of Naval Research under grant N00014-94-1-0234.

9.

1 Introduction

The distributed shared memory architecture offers
the programming and compiling advantages of shared
memory, and at the same time, the scalability and
cost advantages of distributed memory architectures.
By virtue of being the successors to shared memory
and distributed memory (or more precisely message-
passing) architectures, distributed shared memory {or
DSM) machines have also inherited some of the pro-
gramming methodologies and architectural features of
their predecessors. The indisputable importance of
data locality has favored static approaches to data
placement and scheduling on DSM machines, just like
it did on earlier generation message-passing. Thus far,
this has also been the underlying guide in the design
of HPF([7], Fortran D3], and to a lesser degree of the
Cray MPP Fortran[13].

In this paper we give preliminary evidence of the
importance of dynamic solutions to the data manage-
ment and scheduling problems. We present the ar-
chitecture of distributed autoscheduling, a dynamic
environment adopted from our previous work on' uni-
form access shared memory environments. We argue
that dynamic methods can achieve better load bal-
ance, and improve resource utilization (especially in
multi-user environments), while they can still exploit
data locality. In addition to the performance advan-
tages, dynamic environments can deal more effectively
with hardware failures; they can also take advantage
of unexpected changes in the availability of resources
(processors) which is common in multiprogramming
environments.

The major aspect of our new model is incorporation
of capabilities for exploiting data locality while pre-
serving dynamic scheduling and load balancing. This
paper is organized as follows: Section 2 describes our
target machine architecture and our program model.
Section 3 describes the architecture of the run-time
system that implements autoscheduling in a shared-
memory multiprocessor. Data and load distribution
issues are addressed in Section 4. The storage of data
structures in distributed autoscheduling is described
in Section 5 and the task queue in Section 6. Experi-
mental results are presented in Section 7, related work
is discussed in Section 8, and concluding remarks are
given in Section 9. :

2 Machine and Program Model

We consider specifically as target architecture a multi-
processor machine with a shared virtual and physical
address space, built with commercial RISC micropro-
cessors. The global physical memory is divided into
modules, and each module is connected to one particu-
lar processor. A processor can access its memory mod-
ule faster than that of another processor, thus creating
a nonuniform memory. All the processors assigned to

a process use the same virtual to physical mapping,
so a virtual address always corresponds to the same
physical address.

The program model for autoscheduling is the hierar-
chical task graph (HTG), an intermediate program rep-
resentation that encapsulates data and control depen-
dences at various granularity levels, and from which
autoscheduling code is generated. It represents a pro-
gram in a hierarchical structure, thus facilitating task-
granularity control. Information on control and data
dependences allows the exploitation of functional (task
level) parallelism in addition to data (loop level) paral-
lelism. A brief summary of the properties of the HTG
is given here, and details can be found in [2, 4, 9, 14].

The hierarchical task graph is a directed acyclic
graph HTG = (HV, HE) with unique nodes START
and STOP € HV, the set of vertices. Its edges, HE,
are a union of control (HC') and data dependence (HD)
arcs: HE = HC U HD. The nodes represent tasks of
a program and can be of three types: simple, com-
pound, and loop. A simple node represents the smallest
schedulable unit of computation. A compound node is
recursively defined as an HTG and is therefore com-
posed by smaller nodes. A loop node represents a task
that is either a serial loop (all iterations must be ex-
ecuted in order) or a parallel loop (the iterations can
be executed simultaneously in any order).

From the information on control and data depen-
dences, an ezecution tag £(z) is derived for each node
z. The execution tag is an expression on boolean flags
that mark the execution of nodes and arcs in the HTG.
Whenever the values of the boolean flags cause an exe-
cution tag to evaluate to TRUE, the corresponding node
has been enabled and is ready to execute.

3 General Architecture of the
Run-Time System

The execution environment of an autoscheduling pro-
gram consists of the code and data area, defining an
address space, a (time-variant) set of n(t) physical pro-
cessors assigned to that address space, a task ready
queue, and a cactus-stack. Using conventional termi-
nology, an executing program is a process.

The set of processors n(t) assigned to a process at
time ¢ (n(t) : Z* — [0..P]) is called a partition and is
controlled by the operating system, which distributes
the available processors in a machine to the processes.
Scheduling policies at the OS level are beyond the
scope of this paper and will not be discussed further.

The task ready gqueue is a (user space) data struc-
ture that holds task identifiers (task-ids) of the ready
tasks. A task identifier contains task-specific informa-
tion, including the starting address of the task and a
pointer to context information, such as the activation
frame of the task. Each processor allocated to a pro-

_cess executes a loop of the following type:

do
get task-id from task queue
execute task

forever

When a task completes execution, its drive code in-
Jjected by the compiler evaluates the execution tags
€(z) of the affected tasks and the new ready tasks are
inserted in the queue; this is the basic scheduling op-
eration. The execution of a program begins with its
START task in the ready queue and terminates when
its STOP task finishes. ‘

The activation frames of a parallel program can-
not be implemented with the simple stack structure
normally used in sequential programs, since several in-
stances of subroutines and loop iterations can be active
at the same time. Instead, a cactus-stack, equivalent
to a (dynamic) tree of activation frames, is used. All
data structures reside in shared memory, and all acti-
vation frames are organized in the cactus-stack. Stacks
are not associated with processors. The only informa-
tion processors need in order to execute a task is the
beginning address of the code and the base address of
the activation frame. Therefore, any Processor can ex-
ecute any task, and switching between tasks involves
only loading the code pointer and frame pointer in the
appropriate registers.

The drive code injected by the compiler before and
after each task node in the HT'G take the form of entry
and ezit blocks respectively. The major functions of
the entry and exit blocks are as follows:

ENTRY Blocks:

o Allocate private activation frame
¢ Link to parent activation frame
® Execute initialization code

¢ Loop scheduling policy

o Granularity control

EXIT Blocks:

* Barrier synchronization

» Update control & data dependences
o Testing of execution tags

® Queue ready tasks

o Granularity control

Granularity control, listed in both the entry and exit
blocks, is a key feature of autoscheduling. It-works
by dynamically deciding which compound tasks are to
be split into smaller tasks for parallel execution, and
which are to be executed as serial code, in order to
achieve a good balance between the number and size
of parallel tasks. A parallel program must generate
enough tasks to keep all the processors in its partition
busy. However, as the number of tasks increases, so
does the overhead for managing these tasks. By con-
trolling the granularity of tasks, autoscheduling avoids
the generation of unnecessary parallelism that cannot
exploit any more processing power, but may add to
the overhead.

Autoscheduling is a dynamic scheduling environ-
ment, adjusting the number and size of tasks gener-
ated by a process at run-time in order to better ex-
ploit the resources available to a process at any given
time. When operating in multiprogrammed mode the
resources of a multiprocessor must be divided among
computing processes executing simultaneously. Ide-
ally, the amount of resources that an individual pro-
cess receives should be a function of the total workload
on the machine. Programs written for fixed configu-
rations of processors are not appropriate for execu-
tion in such dynamic environments. Autoscheduling
uses the partition allocated to a process effectively and
efficiently, and adjusts to variations in the partition,
making multiprogramming in multiprocessors very ef-
ficient.

4 Data and Load Distribution

Implementation of autoscheduling on a flat shared
memory machine with uniform memory access is fa-
cilitated by not having to deal with the distribution of
data. Since all memory accesses involve the same la-
tency, load balance can be achieved by having a single
queue of ready tasks and letting idle processors fetch
the task at the head of the queue.

In a distributed shared memory machine with
nonuniform memory access, the access to remote mem-
ory can be orders of magnitude slower than access to
local memory. Therefore, it is important to distribute
data and computations in such a manner that the com-
putations performed by a processor involve mostly lo-
cal memory accesses. In general, the higher the local-
ity of access, the greater the performance. However,
enforcing locality can degrade load balance, since the
predefined distribution of work leaves less room for
dynamic adjustments of load.

Autoscheduling on distributed shared memory ma-
chines necessitates data distribution in order to achieve
locality and hence performance. However, in order to
preserve the main properties of autoscheduling that
facilitate the efficient execution of simultaneous con-
current processes, we consider data distribution under
the following constraints: (1) we assume that the par-
tition assigned to a process is not known until run-time
and is time-variant, and (2) load balance must be pre-
served. These goals are achieved through the following
mechanism:

¢ Data are partitioned at compile time across sets
of virtual processors defined by the user (or by a
smart compiler), in a manner similar to HPF [7].

Virtual processors are assigned on demand to
physical processors during run-time. Virtual pro-
cessors can migrate between physical processors
during the execution of a process and may even, at
times, not be assigned to any physical processor.
The precise mechanism is discussed in Section 5.

e Data mapped to a virtual processor are allocated
on demand in the local memory of the physical
processor to which the virtual processor is as-
signed at the time of allocation. Data can also mi-
grate from one processor to another on demand.
The precise mechanism for data allocation and
migration is also discussed in Section 5.

o Iterations of parallel loops and tasks can be
mapped to virtual processors. This assignment
is similar to a hint that these iterations and tasks
should be executed in a particular virtual proces-
sor (most likely because they use mostly data lo-
cal to the processor). These tasks and iterations
can still be executed by any processor because the
shared address space in autoscheduling allows any
task to be executed in any processor.

Our approach to data distribution uses features from

Fortran D [3], HPF (7], and Cray MPP Fortran [13],

and works as follows, at the source language level:

1. The user defines an array V(Py, Pa,..., Pm), of
virtual processors.

2. The user defines a multi-dimensional decomposi-
tion D(Ny, Na,..., N,) that expresses the prob-
lem domain of the operations to be performed.

3. The user defines a distribution T' : D — V
from decomposition D to virtual processor array
V which assigns points in D to processors in V.
A given distribution D can have only one active
mapping to a Processor array.

4. The user aligns each of the array data structures
Ry, R;,..., used in the computations, to the de-
composition D, using alignments A; : Ry —
D,A; : Ry — D;..., respectively. Each element
of Ry(iy,i2,.-.,ip) of Ry is aligned with an el-
ement D(j1,J2,---,Jn) of D, and will be placed
in the local memory of the processor to which
D(j1,j2- -+ Jn) is mapped at the moment of al-
location.

5. The user specifies distribution of loop work with
the construct

doall E on D {B}

where D is a decomposition, F is an iteration
space descriptor that selects a subset of the points
of D, and B is the body of the loop. This con-
struct asserts that the iteration corresponding to
D(j1,j2;- -+ n) should be preferentially executed
by the virtual processor to which this point of D
is mapped. Preferred locations for the execution
of individual tasks can be specified with the con-
struct
task z on v {T}

which asserts that task xz, with body 7, is to be
preferentially executed on virtual processor v.

Ezample: Let X, Y, and Z be data arrays, and
the computation

ZA2XA+YZ

is to be performed, where M represents the lower
triangular half of matrix M:

PARAMETER (N = 100)
PROCESSOR P(4,4)
DISTRIBUTICN D(N,N)
DISTRIBUTE D(15,15) ONTO P
REAL X(N,N), Y(¥,N), Z(N,N)
ALIGN X(I,J) WITH D(I,D)
ALIGN Z(I,J) WITH D(I,J)
ALIGN Y(I,J) WITH D(J,I)
DOALL (I,J) = (4:100,1:I) ON D

Z(I,J) = X(I,D + YJ,D
ENDDOALL

5 Distribution of Activation
Frames

Activation frames are created dynamically in virtual
memory by three types of events:

1. At program start: The global data activation
frame is created at this point. It often holds the
largest data structures. This activation frame is
shared by all the processors that join the execu-
tion of the program. It is deallocated when the
program terminates.

2. At function start: When a function begins execu-
tion it is necessary, in general, to create an activa-
tion frame for its local variables. This activation
frame is shared by all the processors that cooper-
ate on the execution of that function. A function
activation frame is deallocated when the function
terminates. ‘

3. At parallel loop start: Activation frames are also
created for parallel loops with local variables. One
activation frame is created for each physical pro-
cessor participating in the execution of the loop?.

The basic requirement for the layout of an activa-
tion frame or variable size array in virtual memory is
that data mapped to different virtual processors must
reside in separate virtual memory pages. This way,
each virtual memory page is uniquely associated with
a virtual processor. The physical layout of an acti-
vation frame is built during run time, together with
the mappings M from virtual processor arrays to the
physical processors. a :

2Qne activation frame per processor is sufficient because in
our execution model there can only be a maximum of P (num-
ber of physical processors) iterations of any given instance of a
parallel loop under simultaneous execution. :

The scheme works as follows: When a processor ar-
ray Ais defined, the mapping M is empty, and when an
activation frame is created, all its virtual pages are ini-
tially unmapped. Whenever a virtual page is accessed
for the first time, a page fault occurs in the physical
processor y that performed such access, which gener-
ates a user space trap, handled by a routine inserted
by the compiler. The trap checks to which virtual pro-
cessor v € A this page is mapped. If the page is not
mapped to any virtual processor, because it contains
non-distributed data, then a call to the operating sys-
tem is made to allocate a physical frame for the virtual
page in the local memory of processor y. If the page is
mapped to virtual processor v, but v is not currently
assigned to any physical processor, then an addition is
made to M to assign v to physical processor y3, and
a call to the operating system is made to allocate a
physical frame in the local memory of processor y. If
the page is mapped to virtual processor v, and v is
already assigned to a physical processor z, then a call
to the operating system is made to allocate a physical
frame in the local memory of processor z. Figure 1 is
a flowchart of this mechanism.

If a page has to be swapped out of memory, then
the (virtual — physical) memory mapping is updated
to reflect that, and the next access to that page will
cause a page fault; the same criteria as above will be
used to determine where to load the page. If a phys-
ical processor has to leave a partition, then all the
mappings between virtual processors and this physical
processor have to be deleted. The virtual processors
that lost this mapping will remain unassigned to any
physical processor until an unmapped page associated
with them is referenced. Figure 2 illustrates a situa-
tion where there is data migration.

6 The‘Disti"ibuted Task Queue

For a distributed shared memory MPP, a single task
queue causes unacceptable contention, especxally when
task sizes are small, the number of processors is large,
or both. The single queue also makes it difficult to se-
lect spec1ﬁc processors for the execution of each task,
which is desirable when the code exhibits a high de-
gree of data locality. The distributed queue scheme
proposed here uses a two-level queue organization:.one
task queue per processor (local queue), and one addi-
tional task queue for the entire partltmn (the central
queue) All queues reside in the shared address space,
and any queue can be accessed by any processor in the
partition. The enqueuemg/dequeuemg policies work
as follows:

*The central issue of this scheme is that assignments of vir-
tual processors to physical processors are done on demand. In-
stead of assigning the virtual processor to the physical processor
where the fault occurred, alternative policies such as round robin
and least loaded processor can also be used.

‘a.ssxgned to v are stored in z.

physical processor ¥
traps on page p

assigned
to a virtual

processor
v ?

allocate p on y

assigned
to physical
processor

assign vioy

allocate pon y allocate pon x

Figure 1: Flowchart for the mechanism that assigns
virtual to physical processors.

(@ (b) ©

Figure 2: Migration of data assigned to virtual proces-
sor v from physical processor to physical processor

(a) Originally, v is mapped to z and all the data
(b) v is reassigned to
y, old data remain in z but new data are allocated in
. (c) As time passes, old data are purged from z and
reassigned to y.:

. Dequeueing A processor always tries to dequeue
- tasks first from its local queue. If its local queue
is empty, then it tries to dequeue from the central
queue. Only if the central queue is empty will a
processor then start searching for tasks from other
processor queues.

L]

Engueueing: When a task is enabled by an exit
' block executing in a given processor, the criteria
" used to decide where to queue the tasks are the
following, applied in the order enumerated:

1. If the compiler has identified a preferential
virtual processor for the execution of this
task, either by analysis or through directives,
and this virtual processor is assigned to a
physical processor, then the task is.enqueued
in the local queue of that physical processor.
If the virtual processor in unassigned, then
the task is placed in the central queue.

2. If the task is large? and has no preferential
virtual processor to execute, then it is placed
in the central queue (overhead is less signifi-
cant). .

3. If the task has no preferential virtual pro-
cessor to execute and it is small, it is en-
queued in the processor local queue, unless
this queue is full, in which case it is enqueued
in the central queue.

When a physical processor is forced to leave a par-
tition, it must transfer the tasks in its queue to the
central queue, including the continuation of the task
that was suspended, (if the processor was interrupted
in the middle of a task).

7 Results

The experimental results presented here were obtained
through simulation of the execution of high-level code
in the autoscheduling environment described in the
paper. The benchmark suite consists of five simple
programs that illustrate the main advantages of dy-
namic scheduling over static, and a sixth program that
demonstrates the benefits of exploiting functional par-
allelism in this environment. Each of the first five pro-
grams has some properties that allow the comparison
between static and dynamic scheduling for different
types of computation:

1. Block- matriz add: regular and balanced compu-
tation, poor temporal cache locality (only benefit
is from prefetching a cache line).

2. Block matriz multiply: regular and balanced com-
putation, with good cache locality (both temporal
and space).)

3. Block triangular matriz add: regular but unbal-
anced computation, poor temporal cache locality.

4. Block triangular matriz multiply: regular but un-
balanced computation, good cache locality.

5. Life: irregular and unbalanced, good cache local-
ity.

Each of these programs uses three matrices: A4, B,
and C. Each matrix is of size N X N and blocked as a

4A threshold size that differentiates between large and small
tasks can be computed using machine-specific parameters and
other criteria, such as overhead for remote task enqueueing and
dequeueing.

p X p matrix of blocks of size m x m, where N = mp.
The computations are performed on alinear array V of
p virtual processors. A decomposition D of size N x N
is used to control the assignment of array elements and
iterations to the virtual processors. The computations
are performed by a two dimensional doall loop with it-
eration space I. Elements A(3,7), B(3,7), and C(4,j),
and iteration I(7,7) are all mapped to decomposition
element D(i,). Decomposition D is distributed across
the processor array in a block row manner.

The sixth program is a complex matrix multiply,
implemented as four independent real matrix multi-
plies followed by two real matrix adds. By using func-
tional parallelism and performing all four multipli-
cations concurrently, a four-fold improvement in ex-
ploitable parallelism is obtained as compared to the
case where only the loop parallelism in each multipli-
cation is exploited. The matrices are of size N x N,
blocked as before with blocks of size mxm, and a linear
array V of p virtual processors is used (N = mp). The
matrix multiplication is parallelized along only one di-
mension, so the maximum loop parallelism available is

The results presented here are speedup curves with
respect to the physical number of processors used in
the execution of the programs. This number is kept
constant during each execution. In both the static and
the dynamic scheduling the virtual processors are first
assigned cyclically to the physical processors, and time
starts to count after this assignment. The difference
in the dynamic scheduling is that a processor is al-
lowed to steal iterations from virtual processors not
assigned to it, whereas in static scheduling it will only
execute those iterations mapped to virtual processors
assigned to it. For the complex matrix multiply, the
static scheme does not exploit functional parallelism.

In the simulations, execution time is computed by
counting the work in arithmetic operations (1 time
unit), memory reads (1 time unit for cache, 10 for
local, 100 for remote), memory writes (1 time unit),
and iteration fetches (in the case of dynamic schedul-
ing only, 10 time units for local, 100 or 1000 for re-
mote). Cache line size is 8 words, and a whole line
is prefetched when a word is accessed. The cache in
each processor is large enough to hold the entire prob-
lem set, so there are only cold misses. In the following
plots (Figures 3 to 8), the dashed line represents linear
speedup. The bullets (o) represent static scheduling,
the diamonds (¢) represent dynamic scheduling with
a cost of 100 units for remote iteration fetch, and the
stars () represent dynamic scheduling with a cost of
1000 units for remote iteration fetch. N = 256, p = 32,
and m = 8, except for Figure 8, where N = 64, p = 8,
and m = 8.

(T Y. § -1

Y oog®

TeEfoeT®

speedup X number of processors

32? o — static
284 © - dynamic (100) P
94 3 * — dynamic (1000) ///
4 - - - linear speedup
20 o
16
124
8
LINLNLIN TN L A L IO e L B B |

0 4 8 12 16 20 24 28 32

number of processors
Figure 3: Block matrix add.

speedup X number of processors

(29
3]
§

\

e — static -
28 © — dynamic (100) i
943 * — dynamic (1000) . -

- - — linear speedup

20
16
12 4
8 7
4
0-lll[l!l[lll|lll‘lll|lll|lll|llI|
0 4 8 12 16 20 24 28 32
number of processors
Figure 4: Block matrix multiply.
speedup X number of processors
329 o - static -7
283 ¢ - dynamic (100) e
3+~ dynamic (1000) -7
24:‘ . -
i - - -linear speedup -
20 “
16
12 3
8 3
4
0 Hrrrrr e

0 4 8 12 16 20 24 28 32

number of processors

Figure 5: Block triangular matrix add.

geoeg®

OEfA.eeT?

oeEeeg?

speedup X number of processors

3 e - static -
28 4 ¢ - dynamic (100) P
4 . 7
24d * d}fna.mlc (1000) .
1 - - —linear speedup
20
16
12
E
O LI e e o o
0 4 8 12 16 20 24 28 32
number of processors
Figure 6: Block triangular matrix multiply.
speedup x number of processors
829 o ~static -7
28 4 ¢ - dynamic (100) PR
944 *— dynamic (1000) e
o e

- - — linear speedup

20
16
12
8 7
0—I]I|I|I|I|I]I]l|l'l|l|l|l|l|l|I

024638 101214161820222426283032

number of processors
Figure 7: Life.
speedup x number of processors

329 o - static -7
28 4 o - dynamic (100) e
943 *— dynamic (1000) e

3 - - - linear speedup ’
20 P
16 -
12 4
87 P . o *~——— o
4—:/
0-l|l|||v|||11||||||x||||iv|||v|r

0-2 4 6 8101214161820222426283032

number of processors

Figure 8: Complex matrix multiply.

8 Related Work

For a survey of distributed shared memory architec-

tures, see {11]. Information on the architecture and.

programming model of the Cray T3D can be found in
[12,13].

Examples of languages that support the specifica-
tion of data distribution include Fortran D [3], Vi-
enna Fortran 90 [1], High Performance Fortran [7], and
Cray MPP Fortran {13]. Compilation issues for these
languages, including the actual implementation of the
data distributions, code generation, and communica-
tion of distributed data across procedure boundaries,
are discussed in [6, 8, 15].

Research is also being conducted on the field of au-
tomatic data partitioning techniques [5, 10]. In partic-
ular, [10] extends the HTG with information on data
accesses, and from there derives data partitioning and
processor assignment.

9 Conclusions

We have addressed many of the issues involved on
the implementation of autoscheduling in a distributed
shared-memory environment: data distribution, load
distribution, task queue implementation, enqueue-
ing and dequeueing policies, activation frame allo-
cation, virtual to physical processor mapping, and
loop distribution. Our results demonstrate that a dy-
namic scheduling mechanism such as autoscheduling is
very competitive with static scheduling for distributed
shared-memory architectures. Autoscheduling sup-
ports multiprogramming in a multiprocessor very ef-
ficiently because processes can be executed on parti-
tions of time-variant size, allowing a dynamic space
partitioning of the resources across the simultaneously
executing processes.

References

[1] Siegfried Benkner, Barbara M. Chapman, and
Hans P. Zima. Vienna Fortran 90. -In Proceed-
ings of the Scalable High Performance Computing
Conference SHPCC-92, pages 51-59,-1992.

—

Carl J. Beckmann. Hardware and Software for
Functional and Fine Grain Parallelism. PhD
thesis, Department of Electrical and Computer
Engineering, University of Illinois at Urbana-
Champaign, 1993.

[2

{3

Geoffrey Fox, Seema Hiranandani, Ken Kennedy,
Charles Koebel, Uli Kremer, Chau-Wen Tseng,
. and Min-You Wu. Fortran D language specifi-
cation. Technical Report COMP TR90-141, De-
partment of Computer Science, Rice University,
December 1990,

o

[4] M. Girkar and C. D. Polychronopoulos. The
HTG: An intermediate representation for pro-
grams based on control and data dependences.
Technical Report 1046, Center for Supercomput-
ing Research and Development, University of Illi-
nois at Urbana-Champaign, May 1991.

Manish Gupta and Prithviraj Banerjee. Demon-
stration of automatic data partitioning techniques
for parallelizing compilers on multicomputers.
IEEE Transactions on Parallel and Distributed
Systems, 3(2):179-193, March 1992.

5

Mary W. Hall, Seema Hiranandani, Ken Kennedy,
and Chau-Wen Tseng. Interprocedural compila-
tion of Fortran D for MIMD distributed memory
machines. In Proceedings of Supercomputing’92,
pages 522-534, 1992.

[7] High Performance Fortran Forum. High Perfor-
mance Fortran Language Specification, Version
1.0, May 1993.

[8] Seema Hiranandani, Ken Kennedy, and Chau-
Wen Tseng. Compiling Fortran D for MIMD
distributed-memory machines. Communications
of the ACM, 35(8):66-80, August 1992.

[9] Milind Girkar. Functional Parallelism: Theoreti-
cal Foundations and Implementation. PhD thesis,
Department of Computer Science, University of
Illinois at Urbana-Champaign, 1992.

[10] Tsuneo Nakanishi, Kazuki Joe, Hideki Saito, Con-
stantine Polychronopoulos, Akira. Fukuda, and
Keijiro Araki. The data partitioning graph: Ex-
tending data and control dependencies for data
partitioning. In Proceedings of the Seventh An-
nual Workshop on Languages and Compilers for
Parallel Computing. Ithaca, NY, 1994.

[11] Bill Nitzberg and Virginiaj Lo. Distributed shared
memory: A survey of issues and algorithms. JEEE
Computer, 24(9), August 1991.

[12] Wilfried Oed. The Cray Research Massively Par-
allel Processor System — CRAY T3D. Technical
report, Cray Research GmbH, November 1993.

[13] Douglas M. Pase, Tom MacDonald, and An-
drew Meltzer. MPP Fortran programming model.
Technical report, Cray Research, Inc., March
1994.

[14] Constantine D. Polychronopoulos. Autoschedul-
ing: Control flow and data flow come together.
Technical Report 1058, CSRD, 1990.

(15] Hans P. Zima and Barbara Mary Chapman. Com-
piling for distributed-memory systems. Proceed-
ings of the IEEFE, 81(2):264-287, February 1993.

'

