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Abstract:

We have presented here, for the Control Unit(CU) of Benes Interconnection Network(IN), a new fast parallel
computational model named as; Cyclic Cube Engine (CCE), which depends on the Cyclic Cube topology, where the
total number of processing elements is @ such that ®=NU+Um, 1 is an arbitrary integer, such that 2Sh=log N. N
is number of the data items consisting the permutation. We have presented on this model parallel algorithm for
parallel settings of Benes IN in order to realize arbitrary permutation with a setting time of O(h logz N); (assuming
N is base 2) using ®=N@+V® processors (i.e., ®=N). This bound could be achieved by accelerating the parallel
setting algorithm by function call of another very fast algorithm named as the accelerator. We have also, provenin
the appendix of this paper, that our construction is within the lower bound of setting Benes IN for arbitrary
permutation for general nonshared model when ®<N. Using these algorithms we have constructed a fast parallel
setting algorithm to set the switches of Benes IN for arbitrary permutation in parallel time of O( & logaN) where is
h<logz N. The parallel setting algorithm has been constructed depending on the CCE as the main computational
. structure suitable for setting Benes IN in parallel.

Index Terms: Complexity, Computational model, Graph theory, Rearrangeable interconnection network, Nonshared
memory system, parallel algorithm, parallel computations, supersystems.
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I -Introduction

One of the key problems in parallel processing
research deals with designing cost-effective
rearrangeable networks. But Benes Interconnec-
tion Network (IN) is not easy to setup as the
networks with O(N2) connections (N is the number
of inputs). It runs in O(N loggN) time, which is
worse than O(N) setup time of networks with O(N2)
connections, (assuming N is base 2). Such a long
time has limited or restricted such ‘types of
networks to be useful for parallel computation
[Ha87], inspite of its richness to support the
mappings of N! permutations. There is a parallel
algorithm[Na82]
O(log4N) time. The main shortcoming of this
algorithm as well as the others[Or87) is that it
requires O(N) processors with O(N2) connections
among them, because of using a shared memory
computation model. Also, those previous
algorithms are time consuming and not suitable for
supersystems[Ha87].

This paper further examines the setup problem
of Benes IN with a new computational model of
O(N) processors with O(3) connections among them.
Hence, the main goal is to reduce the setting time of
Benes IN to reach the lower bound of O(logzN).
Such a goal motivate us to construct a suitable
parallel computation model for Benes IN’s Control
Unit(CU), depended in this paper on Cyclic Cube
topology. We have implemented on this compu-
tational model a powerful parallel permutation
algorithms suitable to relocate dynamically
arbitrary records of a permutation in PEs connected
as Cyclic Cube topology. We have called these
algorithms implemented on CCE as an accelerator,
because it accelerates the parallel mapping of
Benes IN. In other companion paper we have
proven the lower computation bounds needed for
this model.

In this paper, Chap. 1, have discussed the
background concerning with the use of Benes
rearrangeable IN for parallel processing. Chap.lII,
has discussed a new computation model for the CU
of Benes IN named as Cyclic Cube Engine(CCE).
Chap.lll has given a parallel permutation
algorithm depends on the radix-sort, impleémented
on the CCE with processing time of O(loggN).
Chap.lV, have discussed the realization of the
_parallel setting of Benes IN using the CCE

computation model with the parallel permutation .

algorithms of Chap.lll, to accelerate the setting
time for arbitrary permutation. Chap.V has
devoted for the conclusions.
Assumptions and Notations:

The following assumptions are used throughout
this paper:

which sets the N-input in-

1) We assume that this model has unlimited or
unrestricted parallelism where the number of
modules is tolerable to the problem size(i.e., every
processor has one record). However, this
assumption is for simplicity. We have also, worked
on the limited parallelism problem(i.e., N® the
number of processors such that more than one
records are assigned to one processor) which were
djscussed in other companion paper[Ha88].

2) Each Processor Element; PE(i) has three
registers, B(i), r(i), (i), which correspond to that
PE, and enough memory to hold one record; R(i),
(this includes also, the field F(i)).

3* The distinction between null and a record in a
PE is possible, and one bit tag could be used.

4) (:=) represents an assignment, (<)
represents the connection and routing of two
neighboring processors { has one unit route O(1)).

5) iy, represents the bit ¢ of the binary
representation of i. Consequently, the PEs can be
selected according to the mask specified by the bit 4.

6) isg, represents the complementary of bit ¢ of
the binary representation of i.

7) i(g ¥) represents the selected bits, of the
binary representation of i starting from bit ¢ to bit
g ie., gw)= ihy-anelip-

8) The complexity of an algorithm will be
measured in terms of PE time needed and the
number of unit routes; assuming that, the
arithmetic operations can be performed in O(1)
time. The computation carried outlocally ataPE is
not counted here.

9) The computation model is a nonshared
memory model of an SIMD type machine, where the
number of PEs is denoted by &.

ll. The Cyclic Cube Engine

The computation model used in our work is a
nonshared memory model. All instructions and
data are loaded to a specific number of processors
which communicate through both cubic and cyclic
configuration.

The CCE, is a network of identical processor
elements, as shown in Fig. 2, where each Processor
Element (PE(i)) contains an operand register, a
field memory locations, and basic arithmetic and
logical capabilities.

Let N be the number of input or the element of a
permutation, as base 2, i.e., N=2n. R(i) represents
a record located in PE(i), and F(i) represents the
record’s field. Let for some k such that, 2k=2n and,
1£ k= n. Then each PE(i) has n+ k-bit address F(i)
expressed as (x,y) of integers, where x has n bits
length (0= x<2n), and y has k bits length
(0= y<2k), such that; x- 2¢ +y=R(i), where R(i)
represents the address of PE({), whereas,
0= R(i)<2n+k, N=2n, and the number of ¢
processor elements; (PEs) consisting CCE is;



®=2n+k=N(1+VAh); where h=In/k7, (where T..7,
represents the ceiling function,) such that, 2% Zn.
Each PE has (n+k) bit address R(i) expressed as
(x,y) of inlegérs. Due to Fig. 2 each PE has three
interconnection ports:

Next(x.y) is connected to Before(x, (y +1) mod 2k),
Before(z,y) is connected to Next(z,(y +1)mod 2k), and
Cylce(x,y) is connected to Cycle(x+7Y-2?, ¥), where
Y =(1:2 x¥). (Where mod; represents the modulus
calculation.)

The ports Next and Before are within the cycles,
(each cycle consists of 2k PEs). While the ports Cycle
is between cycles which being connected as the cube
configuration. Theses cycles are in turn inter-
connected as an-Cube.

ll. The Parallel Permutation Algorithm- (The

Accelerator)

The main purpose of this chapter is to permute
the records of any arbitrary permutation, in
parallel. It gives us how to accelerate the structure
of the CU of Benes IN to reduce the setting time of
Benes IN for arbitrary permutation and increase
the efficiency of the parallel setting of Benes IN
algorithm given in Chap.IV. Please note that, the
setting time for this type of network is the lower
bound which is proportional with the propagation
delay of Benes IN itself, (i.e., O(logaN)). The
algorithm performs arbitrary permutation in O(h
log N) time on the CCE for the case of unrestricted
parallelism, such that ® are tolerable to N.
Therefore, every PE may process only one record.
Also, N should always match the PEs such that to
not let more than one record applied to one
processor(in this paper) and restricted parallelism
by letting the PEs to have more than one record
when we have N»PEs, (of the companion paper)
using, ¢ =N(1+1/k) PEs with a connection of degree
three per processor.

l.1. Partitioning CCE into 22-Group-Cycles

At first, let us observe the binary representation
for the addresses of the PEs which consisted the
CCE. We have tabulated the addresses of the PEs of
the CCE model by a two dimensional table (as
shown in Fig. 3). Every row represents the PEs’
addresses fur a cycle. While columns represents the
addresses of PE of 2n PEs per columns for the n-
Cube between n-Cycles, such that every column
represents one dimension related to the cube
configuration, The k low significant bits for all PEs
of every column are equal while they are different
in their n most significant bits. In contrast, all PEs
of every row have equal n most significant bits and
different k most significant bits. Due to these
observations we can partition CCE into obstructed
groups, which is done according to the table’s rows,
i.e., the CCE's cycles. Therefore, 2k-group-cycles, is
defined as a sequence of PEs (h=In/k1,0=h=n)of

2h consecutive rows or cycles. Each column of this
group is a 2h-groups of PEs. Allindicesin 2h-group-
cycles have the same hth MSB (Most Significant Bit)
of the h.MSBs, and all other indices varies in only
the other LSBs of the binary representation of PE.
For example, if h=2, then the 2nd MSB of the h=2
MSBs, is. the fourth bit i.e., 2h-bit=fourth bit,
which is the dominated. partitioning bit such that
we can have two groups of rows. The first four rows
has the fourth bit of 0, and the other four groups has
the fourth bit of 1. In the same way, we can have
four groups of 2h—1-group-cycles, of which.the bit,
(n+k—2)=3rd MSB; is either 0 or 1. Such
partitioning assists us to construct our algorithms,
as will be shown later.

[1.2. The construction of the Parallel

Permutation Algorithm

This section consists from three subsectlons
One represents an informal description with an
example, the other gives the formal details for that
construction, and the thlrd represents the analysis
of those algorithms.

Our permutation algorithm is a parallel version
of MSD (Most Significant Digit) radix sort. The
radix=2k, Then In/k7 digits of F(i) are used. The
following rules corresponds to how to obtain the
MSD radix digits.

1) The binary representation of F(i) is obtained.

2) The k& MSB yield the MSD (Most Significant
Digit).

3) The next to the k bits give the next digit and so
on.

For 0 =i<N, 2n=N, R(i) represents the record
which is initially located in PE(i). ¥(i) represents a
field in record R(:). (F(0),....... F(N-—1)) define a
permutation of (0,....N~1). Recall that, F(i) is
related to the permutation element i, and R(z) is
related to a record in PE(:). The records are to be
permuted so that following the permutation, R(i) is
in PE(¥(1)). This permutation is to be performed on
the parallel computation model of
P =NU+1/h)=2n+k PEs, connected as cyclic cube
topology where, h=In/k7, 1= k<n, NA+Vh)
l1.2.1.  'The Informal Description :
Before we discuss the formal representatxon of
parallel permutation algorithms, we have
presented here an informal discussion supported
with an example in order to show our construction’s
strategy. :

For example, if k=2, n=3, then the permutation
elements; 0,.....N —1 are represented as k integers;
ojog with radix 2k=4, such that 00=0, 01=1,
10=2, 11=3, 20=4, 21=5; 30=6, 31=17, (
according to the above three rules). We can
permute for example, 8 records using 23+2 PEs, as
shown .in the example given in Fig. 4, in which
every box represents a PE, and the number inside it



represents a record. Recall that, these processors
are connected by CCE. Using radix 2k in the
representation of F(i) of the above example, the
permutation algorithm will have k=2 passes, for
re-locating records with respect to the MSD; o1, and
LSD; og respectively. In the first pass, records are
re-located with respect to oj of F(i) such that, the
record of PE(i) is routed to the PE of Row(i),
Column(o(i)). Then the record are organized (or
leveled) such that the record in PE(i) will be re-
located in the PE which is located by the sum of the
pervious locations. .

While in the second pass, records are re-located
with respect to og of F(i), and done in the group-
cycles, due to og, (low radix). This ordering will be
done in parallel, for groups of records with the same
value of 01. For example, there are four group-
cycles of two rows 2i, 2i+h, (i.e., 2h—1-group-
cycles.). Then for each group-cycles records are
routed to the row gg within the same column. Then
these records are leveled in parallel within each
group-cycles and re-located to the appropriate
column without changing their rows. Then to
obtain the desired final records distribution, all the
records are routed to column 0 without changing
their rows. Hence the permutation algorithm
consists of Tn/k71 route-level-gather (passes)
followed by a routing passes so that all N records
arein the column 0.

l1.2.2. The Formal Description

The algorithm makes the records in each group-
cycles to be leveled and gathered in parallel using
CCE of N(1+1/h) PEs. The leveling of a record in a
2h-group-cycles represents the number of the
records preceding it in that group. Therefore, the
Procedure LEVEL, shown in Fig. 5, which works
recursively determines this number for each record
in every group of the group-cycles, in parallel. It
divides a 2h-group-cycles into two 2h—1-group-
cycles. If (i) is the level of a record (if any) in PE(i)
and stored in its register B(i). X(i) is the total
number of records in the 2hA—1l-group-cycles
containing PE(i) and stored in its register (i), then
the level of a record in a 2h-group-cycles is L(i) if
in—1=0, (note thatis_1 =0 for the upper 2h—10f a
2h-group-cycles, in Fig.3 and Fig.4.), or
L) +ZUmh 1), if ip—1=1. (Where Z(i) represents
the total number of records in the 2k—1-group-
cycles including PE(). L(i) is the level of the record
in the register B(i) of the PE(i) (if any) within the
2h—~1-group-cycle.) Then, unfolding the recursion
yields the iterative procedure LEVEL. We can see
that LEVEL uses O(h) PE time and exactly A unit
routes. After leveling the records the procedure
GATHER shown in Fig. 6, gathers records with
each 2h-group-cycles, such that they are moved to
consecutive PEs. Let L(i) be such that the record (if

any) in PI(i) is be re-located to the R(i)th PE in the
2h-group-cycles. (The L(1) used here differs from the
L(i) obtained by LEVEL by an additive constant to
be determined later). GATHER is achieved by first
re-locating all records in the group-cycles to PEs
such that the PE indices and L(i) agree in bits 0 and
1; and so on until records have been routed to the
correct PE. Fig. 5, shows the formal recursive
construction of the algorithm named by the
procedure LEVEL . Whereas, Fig. 6, shows the
procedure GATHER(h).

The total realization of the parallel permutation
is shown in Fig. 7, which shows the algorithm
named as the procedure PARALLEL-
PERMUTATION(h), that works to accelerate the
parallel setting’ algorithm of Benes IN given in ths
next chapter. Fig. 7, represents the total
realization of the parallel algorithm performed in
I'n/h71 passes. The routing in each pass is done in
parallel at each 2h-group-cycles, (note that, at each
pass there is only one record per row, because of the
assumption of limited parallelism). As shown in
Fig. 7, at first the algorithm works to re-locate R(i)
in the pass; p to column o(i), where o(i) =F(i(h—1))
such that, h=n—(p—1)k, and l=max(h—k,0).
Therefore the record in each row is replicated over
all PEs in that row, and then deleted except for the
one in the proper row.

111.2.3. Analysis

As we have seen that arbitrary permutation can
be permuted in n/hTpasses. For instance, in the
pass p, the record R(i) are re-located according to
the digit o(i)=F(i(k~1})), as the sort key. For the
algorithm shown in Fig. 7, the block @, on the
figure represents the records at the rows are
duplicated over all PEs in that row. The number of
unit-routes for this block is In/k1.k=nl. Also, in
the block (), all copies of these records are deleted
except for the proper one. The call of the procedure
LEVEL(h, k), levels the 2/i-records in the 2hA-
group-cycles. The call of the procedure
GATHER(h,k,n) partitions the records from the 2/-
group-cycles into 2l-group-cycles, each partition is
containing records which their field differ only in
the most significant [ bits. The number of unit
routes needed to execute the call of these two
procedures have h per iterations of the for loop in
the block @. Therefore substituting for A, then the
unit routes needed for calling these procedures with
the block @ is; (h+1)n=n3. The block © relocates
the record into the PEs of column 0 of the same row.
Therefore, this block has a number of unit routes of
n—(Mn/k1—1)k=n2. Then the total unit routes
needed for the accelerating algorithm;
PARALLEL-PERMUTATION(n,k,h) is §(n,k)=
nl+n2+n3 this enquality is because of k=n.
Substiuting with the above, we have



E(n,k)2n+k+(Mn/k1+1)n=(n/k7+2)n.
Therefore, the number of unit routes is of O(&
logyN), where h=Tn/k1, if we have ® PEs of 2n+k.
IV. Parallel Setting Algorithm for Benes IN

In this chapter we will represent the main
parallel version of Benes IN’s realization
algorithms implemented on CCE model of Chap.II,
and accelerated by parallel permutation algorithm
given in Chap.lIl.

IV.1. Notations and Characteristics

We have presented here characteristics and
realizations concerning with Benes IN; as
following:

1) Let II(i)=j represents arbitrary permutation
of N elements such that; i=(0,1,....N—~1), where
0=ij<N, assuming N is base 2, i.e., N=2n. (Note
that, the small brackets; (....), represents an ordered
set of elements.) Therefore II(n) means the permu-
tation as a function of n. For instance, i=
(0,1,2,3,4,5,6,7), j=(0,2,4,6,1,3,5,7), which repres-
ents the perfect shuffle permutation. Hence, for
11(0)=0, II(1)=2, II(2) =4, and so on. Also, let the
inverse of this permutation be represented as
VI =V({) =L

2) According to the recursive structure of Benes
IN, II(n) is divided into two parts of sub-
permutations. IIyp(n—1) represents the upper
subpermutation of 0=ij<N/2, at the input of the
upper middle stage, named as Byp(n—1), of Benes
IN; B(n). Also, the I gw(n —1) represents the lower
subpermutation of 0=ij<N/2, at the input of the
lower middle stage, named as Byow(n—1) of the
B(n) as shown in Fig.1.

3) We have also represented the required perm-
utation; II(n) by an undirected graph [Na82];
G(I1(n)), in which every vertex; v represents a SW of
B(n) IN, while the edges represent connections
- between the vertices according to the permutation
required. Consequently, we have two disjoint set of
vertices. One is the vertices corresponding to the in-
put stage, and are denoted by; Vis=(aj,as,
A3euenens a(N/2-1)), where every vertex; aLi/2J;
corresponds to the switch Li/21 of the first stage; 0.
While the other set is the vertices corresponding to
the output stage, and are denoted by; Vout=(21,22,23
....ZN/2—1), Where every vertex Z1j/21; corresponds to
aswitch Lj/21 at the last stage; 2n—1.

4) From the bipartite multigraph we can find the
subpermutation named as; complete-
subpermutation-group, which represents a cyclic
path from vertex Li/2] with its edge connected to
other disjoint vertex and so on till it return back to
the same vertex Li/2J. Knowing these
subpermutation-groups we can find in parallel the
switching states of the first and last stages, besides,
the permutation of middle upper stages IIyp(n—1),

and the permutation of middle lower stages
I ,ow(n—1), of Benes IN.
5) Let us define A(w,e), as the function’s state of

~ the SW; ¢ of the stage; w. Hence, the parameter w

corresponds to the stage number, where 0= w<
2n—2, and the parameter ¢ corresponds to the
switch e, where 0=2e<N/2. A(w,e) has only one of
the two values, which represents either 0, or 1. The
value 0; represents the setting of that SW to the
straight connection, while the value; 1 represents
the setting of that SW to the cross connection, Fig.1.

6) Let Hyp(i/2) represents a subpermutation of
[1(i) which come from the output of the upper
middle stage; Byp(n — 1) of B(n). For example for the
perfect shuffle permutation, the Hyp(i/2)=(0,3,4,7)
which represents a subpermutation of the output
permutation II(i), which come from the output of
the Byp(n —1); see Fig. 1. Please note that Hyp(i/2)
has the following characteristics, which are related
to B(n) construction: 0¢ Hyp(i/2), [Hyp(i/2)| =N/2,
and if iz, ig € Hyp(i/2), where i1 7 ig, then {77 (i2)y0,
and V(ip)#(V(i2))yo. However, the set Hyp(i)
defines a complete matching on the bipartite graph,
G(I1(i)). In fact the set Hyp(i/2), give us enough
useful information about the switch settings for
stages 0 and 2n—2, ITyp(n—1), and IIow(n—1)
using the following rules: If i€ Hyp(i/2) then; @
A@2n—2, #2)= ig, @ AQOV(/2)= (V(i)), ®
TIyp(V(iV2)) = U2, @ Tow(N/2+(V(i)/2)) = N/2+
TI((V(D)y0)/2). (please note that all divisions are
integer division, i.e., Li/2J).

IV.2. The Construction of The Parallel
Algorithm for Benes IN

We have seen that the set Hyp(i/2), are useful to
find the Benes IN’s SWs’ setting. In result, we
would like to find a fast parallel method to find
Hyp(i/2).

A) The first step in the parallel algorithm, is to
detect the complete-subpermutation-group, which is
defined above as a cyclic path from and into again a
certain vertex, (IV.1 the realization 4.). Therefore
the procedure; SUBPERMUTATION-GROUP
shown in Fig. 8, performs this task by finding the
subpermutation-groups; which represents the
components of the complete-subpermuitation-group.
Please note that, if C represent a certain sub-
permutation-group resulted from the execution of
procedure SUBPERMUTATION-GROUP, then C
has the following characteristics: @ If i€C, then
ijjo€C. @ 1f Cy, and Cg are subpermutation-groups,
such that; i€C;, and i;0€Cq, then C;+Cg,
represents a complete-subpermutation-group of the
permutation graph; G(I(). @ [C1]=|Cq} if i€Cy,
then i0€Cg and i€Cgy, then iyp€Cj. Note that this
algorithm works on the computational model
presentd in Chap. lI, where PEs in a 2h-group-
cycles, are linked together using a field F(i), (recall



F(i) is the link field in PE(i)). As has been
presented in Sec.11.2, an arbitrary permutation is,
initially distributed over @ PEs, such that every
record is in one cycle of the CCE model. Therefore,
the record j is in PE(:) of the cycle; [, and 0=i{<N of
the CCE. If j€ II(i) then for some j’€I1(i) such that;
J =MV (i), note that V(II(0)) =V(j)=i. There-
fore, applying the algorithm of Fig. 8, we have for
instance, j and j’ be in different subpermutation-
groups, and j and (j')y¢ are in the same sub-
permutation-group. )

The time complexity of SUBPERMUTATION-
GROUP algorithm is of O(k), which represents the
prallel computation time within the cycles of: 22 PEs
of the CCE. The subpermutation-groups for the
perfect-shuffle are; (0,3), (4,7),(1,2), (5,6).

B) The second step is to find Hyp(i/2) and
Hjow(i/2) from the subpermutation-groups, which
are determined by the procedure
SUBPERMUTATION-GROUP, in parallel. Here,
these groups are localized to 2h-group-cycles,
(defined in’'Sec.lil.1). Therefore, the procedure
DIMINUTION(h)'s algorithm shown in Fig. 9 ,
diminute the permutation II(i) represented by the
subpermutation-groups, such that to determine
D(i); which represents the minimum integer in the
subpermutation-group (containing i, 0= { <N). This
procedure takes in use the direct connection of CCE.
Hence, after the iteration ¢ of the for loop, the

‘register § which contains the field F(i) points to the
register B of other PE at distance 2¢+1, (please note
that, the distance is measured along the sub-
permutation-group, mapped on the cycles of CCE
(i.e., the 2h-group-cycles)). Therefore, completing all
the iterations till $=h —1, we may have D(i), be as
the minimum integer of the complete-sub-
permutation-group that also contain i. Using the
same example of the perfect shuffle permutation,
the set of subpermutation-group, will be mapped
onto 2h—1-group-cycles, of CCE, such that every
subpermutation-group is on one 2h—1-group-cycles.
Due to Chap.lll, we have (for our example) four
groups of group-cycles, such that every sub-
permutation-group is mapped on one group-cycle.
Operate all groups of the group-cycle, in parallel to
determine Hyp(i/2)=(0,3,4,7). The execution time
is proportional to the partitioning time of the
group-cycle, i.e., O(h).
"+ C) This is the complete algorithm named as the
procedure PARALLEL-MAP-SETTING(n,h,k),
which calls the procedures presented above as A
and B, as shown in Fig. 10. This procedure re-
presents:ithe control mechanism for the CU of Benes
IN to set its SWs for arbitrary permutation in time
of O(h logaN). ‘At each iteration the setting of the
first and last stages of all B(h) Benes subnetworks
of B(n) is determined in parallel. Thus, in the first

iteration(i.e., h=n) the SWs' setting for stages 0
and 2n—2, according to the rules @, and @
(presented at the end of sec.IV.1) as well as the
IIyp(n ~1), and I gw(n—1), are determined in
parallel. In the next iteration, (i.e.,h=n—1) the
SWs 'setting for stages 1 and 2n—3, as well as the
Tup(n—2), and IT; ow(nr—2), {(according to the rules
@, and @) are determined in parallel, and so on.
Hence, the parameter h which specify the size of the
2h-group-cycles dominate the size of the group-
cycles on which the permutation is mapped.

Please note that the statement denoted on Fig.
10, represents how to achieve the rule @ and @ of
sec.lV.1. Whereas a division by 2 requires us to
shift bits A —1,...1 one position right and define the
new bit (h—1) to be zero. Also, adding 2h—1
requires changing bit A—1 to 1. Therefore,
statement @ and ® on Fig. 11, implement the rules
@ and @ for each B(h) network. If the least
element in a complete-subpermutation-group, is
even then all elements in that class must be routed
through the upper B(h—1) network. The
statements (© is executed on PEs whose register B(i)
is zero. In this statement the SW’s settings for the
first stage of all B(h) networks are determined by
the rule @. When h=1, then B(h) networks have
only one stage, and then the statement @
terminates the operation. But when h+# 1, the SWs
settings for the last stage of all B(h) networks are
determined by the statement ©.

V.Conclusions

The construction of the control unit of Benes
interconnection network, appears to be highly
sequential in nature, through the controlling
algorithms presented by [Ca87], but it can be
parallelized using efficient model like the CCE
model presented in this paper. Therefore the time
complexity for setting the SWs of Benes IN becomes
comparable with the propagation gate delay, i.e.,
O(log N), which represents the lower setting bound.
This bound could be achieved by using an acce-
lerator which can realize the parallel permutation
problem in time 'of O(loggN), on the CCE parallel
processor model of @ =2n+#% PEs, where 2n=N, and
2k represents the number of PEs per cycle where
d>N. -
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Fig. 4, An.example of the parallel permutation algorithm
using the CCE.

Procediire GATHER(h,k,n)
comment Accpording to L(i) determined by y-ocedure
LEVEL, relocate the records R(i) to the PEs;
global integer array R(i), L(i); ‘
comment I'(i) is the field of the record R(i);
do foreachd=hto n+k—h
if Ftd)= null, gnd PILG# iy then
begin
pardo (R(iyg)), B(L(iyg))) «~R(,L{D);
odpar;
end;
end GATIIER,;

Fig. 6, The algorithm for the procedure GATHER(n,k,h).

procedure LEVEL(h,k,n);
make the records for each group of PEs. Recall
that, (i), r(i), and u(i) represent the registers of
PE(i), such that, L(i} in register f(i), Z(i) in r(i);
zlobal integer array F(i), L(i), Z(i); o
s @)= 0;
f F)= null then r(Z(i) =1 else r(Z())=0;
do foreach¢:=h to n+h—h;
begin
parde plipg)er(E(D);
ifigg=1then PLGY:=P(L(D) +pli);
| P(2(D): = p(E) +pli);
odpar;
end:
end LEVEL;

comment

Fig. 5, Thealgorithm for the procedure LEVEL(n,k,h).



procedure PARALLEL-PERMUTATION(n,k,hY,

On CCE of 20+ 4 PEs, the paralle! permutation of
20 records, according to the field F(i) of the record
R(i), can be done;

global integer array R(i), L(i),

begin
if i(k Q)= 0 then F(i): = null;

comment initialize the remaining columns;

commenl

h:=n;
comment the number of column in a 24-group-cycles, is 2n;
for p=1until [/kT;
comment pis a pass of I'n/k1 passes of radix sort algorithm;
pardo for each $=0tok;
comment copy records over colui:-us; @
parda if P()*# null then R{izg)«<R(); l
odpar;
odpar;
=max(h—hk,0); f
.., form the digit; @

comment bits, h—1,

i) =null else F():=F(),
call LEVEL(h,k,n);
BLG)): = PIL(D) + Lis2n .21
call GATHER(h,k,n);
g=hh=L;
comment Each partition is 2l-group-cycles columns;
end;
comment relocate records to the first column
begin
pardo for each ¢=
i F()= pull then
odpar;
end;
end;
end PARALLEL-PERMUTATION

w —R(); T ©

if LifznJ= F(i(h=1 ) then { @

procedure PARALLEL-MAP-SETTING(n,h,h);

commnet parallel algorithm for setting Benes'IN;

global integerarray  11(0: N~1), D(0:N~1), V(:N=1),
A(0:2n -2, 0:(N/2)—1);

begin;
REPEAT: for h:=n {01 slep ~1
begin;
w:=n~-h;
call SUBPERMUTATION(h);
call DIMINUTION(h);

comment for permutation (i) =j, if j¢ H,p(Li/2]), then
D(i):=0;

D(i)' = D(i//g)‘

call PARALLEL-PERMUTATION(h);

comment this means B(V(i))« D(i);
(BIV)), DY > « <V, D());
comment setling of Lhe lirst stage;

i (i)=0then w=igand Mw,Li/2d)=iy clse{’.o

Aw,Li/2]):=B(= ),
comment setling of the first stage; £
ifh=1 then exit; — @

comment assign the last stage; r

if D(i) =0 then r(A(2n =2 —«w, Lil21))+iy; :.©

ccomment Updates I1(i) such that it corresponds to the
Ilyplh—1) ifiLis even;

If Bli)= ig then p(Tl(iyg) « p(TICE));

BD oo inigih — iV pd1@); ¥— @
routes the I1(i) to PEs whose index
correspondsto the rules @, and @; *—@

() =i(p=1 4 _ (DR =1 )));

end;
goto REPEAT;
end PARALLEL-MAP-SETTING

comment

Fig. 10, The algorithm for the procedure PARALLEL-MAP-

Fig.7, The algorithm for the procedure PARALLEL-
PERMUTATION(n,k,h).

SETTING(h,k,n).

procedure SUBPERMUTATION-GROQUP;
comment find the subpermutations which represent the
subpermutation-group.

global integer array F(i), I1(i), V(i);

BE@): = (PD)o:

assign the register (i) which contains the field
F(i) with the value (TI())y0;

BFGyg)) « PRGN,

call PARALLEL-PERMUTATION(n,h,k)

VP, BRPN) Y=, BIFGN ),

end SUBPERMUTATION-GROUP

commenl

vFig.s, The algorithm for the
SUBPERMUTATION-GROUP.

procedure

procedure DIMINUTION(h);
comment this procedure diminute the permutation I1(i) to
find out the minimum element in every
subpermutation;
global interger array F(i), D(i); integer array p(i), r(i);
begin;
D(i):=1i;
parado foreach ¢=01o h—1
comment works in parallel on all 2h-1-group-cycles;
7liyp)— BFD)yo;
this assign FF(i) =, during iteration $=0,
F(na) = ino, therefore r(F(iuo)) =juo;
call PARALLEL-PERMUTATION(hA)
(@), PRGN+ (D), BFGEN);
DU): = min{ D(), pli)};
odpar;
end DIMINUTION

comment

Fig.9, The algorithm for the procedure DIMINUTION(h)




