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Optimization of Multi-Way Join in Parallel Database
Systems
and its Performance Evaluation

Miyuki NAKANO, Takahiko SHINTANI and Masaru KITSUREGAWA
Institute of Industrial Science, University of Tokyo
7-22-1 Roppongi, Minato-ku, Tokyo, 106 Japan

In this paper, we consider parallel multi-way join processing in a shared-nothing environment and propose a new
multi-join scheduling algorithm which optimizes a query tree ﬁaking into account a finite bandwidth network. Our
algorithm first generates sub-tree seeds which fully consumes the network bandwidth in pipeline processing. Then,
these sub-tree seeds are combined to produce an optimal query tree. The restriction conditions for generating
a sub-tree seed which balances I/O accesses and network transfers and which uses less memory are described in
detail. The proposed algorithm for generating the multi-way join plan is evaluated in comparison with former work
by using the introduced cost formula. From the evaluation results, not only is the quality of the proposed method
better than previously presented algorithms such as left-deep, right-deep and segmented right-deep trees, but the
quality of our algorithm does not deteriorate comparatively.
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1 Introduction

Recently, there have been a number of commercial
database systems implemented on parallel machines.
These machines are developed from high-performance
microprocessors, utilize low cost memory whose capac-
ity is very large, possess a high-bandwidth network and
many small low cost disks. However, the database sys-
tems built on these machines are very simplistic from
the point of view of parallelization and few of them
consider inter-operation parallelism, especially for the
multi-way join. So, in order to exploit inter-operation
parallelism, significant effort[1, 5, 7, 8, 10, 11, 12, 13]
has been focused on developing an efficient multi-way
join processing scheduler for parallel database systems.
Although several multi-way join optimization meth-
ods have already been proposed, almost all of them
are targeted for a shared-everything environment and
there are few algorithms for shared-nothing systems
which consider system resource consumption for net-
work transfers and I/O accesses.

As described in [8], because of the evolution of com-
puter technology, CPU power and memory size con-
tinue to increase. Thus, more relations can be loaded
into memory and it is necessary to explore a new paral-
lel processing algorithm for multi-way join processing
in order to materialize “inter-operation parallelism”.
Although [9] proposed using “dynamic programming”
for the optimization of multi-way joins, this algorithm
determines a sequence of multiple join operations and
does not consider parallel processing of the multi-way
join. In [8], they reported that methods which exploit
inter-operation parallelism can achieve better perfor-
mance than previous methods which processes join op-
erations sequentially. However, their main concern is
to demonstrate the importance of inter-operation par-
allelism in a shared-nothing environment and optimiza-
tion of the multi-way join is not considered. In [4], the
optimization of parallel query processing is discussed,
however they only consider CPU-bound and I/O bound
tasks executing in parallel in a shared-everything en-
vironment. In [1, 7], they propose a greedy heuristic
method for multi-way join optimization, however they
are only concerned with memory size and source rela-
tion size when they make a hash table, and the tempo-
rary relation generated after processing some join op-
erations in parallel is always written out to disk. More-
over, the proposed algorithms use a shared-disk envi-
ronment. [5, 10, 12] also provide optimization methods
for the multi-way join and show that performance can
be improved by fully utilizing main memory and reduc-
ing the write cost of temporary relations. Although the
algorithm proposed in [12] is targeted to both shared-
everything and shared-nothing environments, it is not
clear from [12] how they manage to balance system
resource utilization, especially overlapping of network
transfers and I/O accesses in a shared-nothing envi-
ronment. As for parallel dynamic programming in [10],
they only consider the cost function of a multi-way join
in a shared-everything environment. In [11], the cost
formula for multi-join queries are considered in detail,
but their research platform is a shared-everything ar-
chitecture.

In this paper, we propose a new multi-way join plan
generation strategy which takes not only memory and
CPU consumption but also network bandwidth into
account. In the proposed algorithm, the concept of a

“balanced seed-tree” is introduced as the unit of paral-
lel processing for the multi-way join. For processing on
n-way multi-join in a pipeline manner, n data streams
flow through the interconnection network. Although
communication bandwidth is increasing rapidly these
days, the advent of disk arrays has increased the band-
width of I/O data streams. This means the network
could easily saturate when there are more than a few
join operations. In order to fully consume the network
bandwidth during pipeline processing, a candidate set
of balanced short-trees are generated by introducing
some restriction conditions which consider system re-
source consumption in shared-nothing systems, espe-
cially utilization of memory and balancing I/O accesses
and network transfers by using a derived cost formula.
These balanced seed-trees are combined into the final
scheduling tree. The restriction conditions are deter-
mined according to some heuristics in order to exploit
the harmonious utilization of I/O accesses and network
transfers. In our algorithm, maintaining the balance
of system resource consumption takes precedence over
memory utilization at the pipeline processing level, so
that total performance is better than that of the pre-
vious methods which only take into account memory
utilization.

The remainder of this paper is organized as follows:
In section 2, we propose a new algorithm for multi-
way join processing and describes this algorithm in
detail. The cost formula which considers computer
resources such as CPU processing, I/O accesses and
network transfers costs is introduced. Then, the gen-
eration strategies of a balanced seed-tree are described
in the light of bounded system resources. In section 3,
we report simulation results by using the cost formula
introduced in section 2. The quality of our algorithm
is substantially superior in comparison with results of
previous work. We conclude this paper and discuss
future plans in the last section.

2 New Optimization Algorithm for Multi-
‘Way Join

We propose a new algorithm for multi-way join schedul-
ing algorithm which considers system resources while
optimizing a query.

Although communication bandwidth is increasing rapidly

these days, the advent of disk arrays has increased the
bandwidth of I/O data streams. This means the net-
work could easily saturate when there are more than
a few join operations. So, in our algorithm, bounded
system resource consumption, especially utilization of
main memory and balancing of I/O accesses and net-
work transfers are considered. In our algorithm, hold-
ing the balance of system resource consumption takes
precedence over memory utilization at pipeline process-
ing level, so that the total performance is better than
that of previous méthods which give memory utiliza-
tion preference.

The concept of a “balanced seed-tree(BST)” is intro-
duced in order to balance system resource consump-
tion all through the execution of the multi-way join
in a shared-nothing environment. The balanced seed-
trees are created along with generation strategies which
first fully consume the network bandwidth and then at-
tempt to utilize memory. The balanced seed-tree is the
unit of parallel processing in which data streams flow
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through the network in a pipelined manner. The fi-
nal scheduling tree is constructed from a combination
of balanced seed-tree sets. Consequently, by using the
balanced seed-tree, the balanced consumption of the

bounded system resources, especially the bounded net-.

work bandwidth, for multi-way join processing on a
shared-nothing architecture can be obtained.

2.1 Algorithm Overview

NEW ALGORITHM :
mersize = total amount of local memory of each node
relSET = all source relations
join_graphSET = all join graph edges
seedSET = pair of relations in Join’fgraphSET
balanced seed-treeSET = resultSET = ¢
while(seedSET # ¢ }{

get one_seed from seedSET;

seedSET = seedSET - one_seed;

balanced seed-treeSET = makeBST(one.seed);

while (balanced seed-treeSET # ¢) {

J3(result 13)
J2(result 12)
Ji(resuit I1)
R1

R4
R3

R2 or result of lower sub—tree

Figure 1: Balanced Seed-Tree

In the main loop, one pair of relations which are

connected by an edge in the join graph is selected as

a base for generating balanced seed-tree sets. Then,

makeBST is called and the results (balanced seed-tree

sets) of makeBST are passed as arguments of makeRE-
SULT. The module of makeRESULT generates a final
multi-way join plan from a balanced seed-tree set until
all the given balanced seed-tree sets are processed. The
minimum cost result is acquired by calling the costtree
module which calculates the specified result trees gen-
erated by makeRESULT. The main loop is executed

resultSET = makeresult(one_sced, balanced seed-treeSET)yntil all the pairs of relations joined by an edge are

tmptree = costtree(resultSET);
if( cost of tmptree < cost of minimum tree){
minimum tree = tmptree

}

}
makeBST (one_seed) :

relset = all relations - one.seed;

while(relset != @) or (any relation of relset does not satisfies

the strategies listed below){
find a combination of relation called " balanced
seed-tree” from relset by using one.seed
as a starting base
strategy 1.
generate a short right-deep tree in which the
network bandwidth is fully consumed
and whose hash tables and temporary result can
be held in memory
strategy 2.
generate a short left-deep tree whose temporary
result can be held in memory.
strategy 3.
generate a short right-deep tree in which all join
o%eratlons can be processed in memory and
whose temporary relation
is written to disk and its cost is I/O dominant
strateiy 4. ’
mark source relations which fit in memory
balanced seed-tree_set +=
a generated balanced seed-tree
relset = relset - a generated balanced seed-tree

return balanced seed-tree_set and the rest of relset

makeRESULT(balanced seed-treeSET) :
while(balanced seed-treeSET # ¢ ){
make result tree in a bottom-up manner using
a full search

return set of result trees

used.

The balanced utilization of system resources, espe-
cially balancing consumption of network transfers and
I/O accesses is considered in order to generate a bal-
anced seed-tree set, since, in a shared-nothing envi-
ronment, parallel processing is not performed once the
data stream is disturbed by excessive data transfer
through the network or excessive 1/O accesses. In
[10], the dynamic programming method for parallel
processing prunes the high cost branches in order to
shrink the number of candidate trees, so almost all of
the branches which store temporary result relations to
disk will be pruned. In contrast, our method does not
discard branches whose temporary result is written to
disk as a candidate balanced seed-tree when the net-
work bandwidth is relatively low or the network trans-
fer cost is very large during the probe phase of a bal-
anced seed-tree. In this case, although the cost of a
balanced seed-tree seems large at this level, the total
cost becomes optimal.

2.2 Balanced Seed-Tree

" In this subsection, we describe how to generate a
balanced seed-tree set from the given system resources
and static database information.

In order to materialize the balanced usage of bounded
system resources, we introduce four strategies for gen-
erating a balanced seed-tree by using two criteria : the

consuming condition and the memory fitting condition.

The consuming condition means that during the probe

phase of each "balanced seed-tree”, the cost of the data
transfer through the network does not exceed the cost
of reading the probe relation from disk and, if neces-
sary, the cost of writing a temporary relation to disk.
The memory fitting condition means that the left leaves
of a “balanced seed-tree” fit into main memory or the
temporary result will also fit into main memory. In
order to evaluate these two criteria in the strategies,
the balanced seed-tree cost formula are derived from
system resources, especially overlapping conditions for
I/O accesses and network transfers.

Table 1: Pseudo Code of the Proposed Algorithm

Table 1 describes the algorithm’s processing flow.
The proposed algorithm consists of a main loop and
three modules:

« makeBST makes a balanced seed-tree set from the

specified seed

o costtree calculates the cost of the specified trees

and returns the minimum cost tree

o makeRESULT makes the result trees (or candidate

trees) from a balanced seed-tree set using a full
search.

2.2.1 Cost of Balanced Seed-Tree

We consider the cost of a balanced seed-tree by using
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Parameters | Description
N number of processors and disks
M(m) total memory size (memory size per node)
R(r), S(s) | total size of relation R and S (sub rela-
tion size per node)
|T]ioseq cost of reading z tuples from the source
relation
|tlioran cost of reading z tuples from a tempo-

rary relation and writing the results
cost of transferring « tuples through the
network between different nodes.

lzllretwors

cost of moving x tuples from 1/O buffer

Zmove
to network buffer after splitting tuples
or from network buffer to hash table af-
ter hashing

Toplit cost of splitting z tuples
Thash cost of hashing z tuples
Y * Tprobe cost of probing a hash table composed

of y tuples with = tuples

Table 2: Notation for Cost Formula

Figure 1 as an example by using the notation presented
in table 2. The shared-nothing system considered in
this paper consist of N processors, M = m x N main
memory and N disks.

The I/0O accesses, the network transfers and the CPU
processing can be almost overlapped in the hash-based
join algorithm on a shared-nothing architecture. So,
the cost of the build and probe phases is determined
by the most dominant cost among the above three fac-
tors. Since the build and probe phases are executed
independently, the cost of processing a balanced seed-
tree is as follows:

Sub Tree Cost = Build Phase Costeed_tree
+Probe Phase Costeeed_tree 1)

First, if all the hash tables are generated from source
relations R2, R3 and R4, the cost of the build phase
is expressed as follows. Let 7;(i = 2,3,4) be the size
of the portion stored in each local disk of relation R2,
R3 and R4 respectively. The total relation size R;(i =
2,3,4)isri(i = 2,3,4) x N. We assume Ry+ R3+ Ry <
Mandry +7r3+14 <m.

Build Phase Costgeeq_tree

= Build Phase Costy1 + Build Phase Cost o
+Build Phase Cost 3

~ ma'x(lrzlioseq,“rzunetworkv
T2split + szave + r2hash + r2mov¢) +
ma'x(lrslioseq, 173l nework»
73split + T3move + T3hash + T3move) +
ma‘x(lr‘llioseq, ”7'4”neworka
r4spl'it + rdmove + T4haosh + T4move) (2)

If the temporary relation is generated by the lower
balanced seed-trees on behalf of source relation R2, the
cost of the build phase is expressed by the following
two equations(3 or 4). When the temporary relation
of the lower balanced seed-tree fits into main memory,
the cost of generating a hash table is included in the
cost of the lower balanced seed-tree. So, the cost of the

build phase is as follows:

Build Phase Costseed_tree = Build Phase Cost o +

Build Phase Costz (3)

When the temporary relation of the lower balanced
seed-tree does not fit within main memory or the net-
work transferring cost is large, the temporary relation
is written to a local disk. Then, the temporary relation
is read from disk and transferred through the network
to the target node. In this case, the random I/O ac-
cess cost is adopted to read the temporary results. Let
tempres be the size of the intermediate results stored
portion in each local disk. So, the cost of the build
phase is as follows:

Build Phase Costseed_tree

= Build Phase Cost, + Build Phase Cost ;o
+Build Phase Cost 3
ma-x(ltmpreslioran» HthTGS”nezwork,

14

tmpresgplir + tMPresmove + tMPresuosh + tMPresmove)

+Build Phase Cost s + Build Phase Cost ;3

Although, in the build phase, I/O access and net-
work transferring can be done in parallel for only one
of the join operations, using the pipeline method, multi
probe phases can be performed in parallel and it is
necessary to consider the condition of overlapping be-
tween I/O access and network transfers of the probe re-
lation(R1). When the temporary relation(I3) fits into
main memory, the cost of the probe phase is as follows:

Probe Phase Costleeq_iree
~ max(|rllioseq,
Hrlllerans + [11]ltrans + [12]lerans + Hi3|ltrans,
Tlsptit + Tlmove + Tlhash + T1 % 72pr0pe
+ilsplit + 1lmove + tlpash + 11 % Tsprobe
+i23ylit + 12move + 12hash + 12 * T4probe
+i3sptit + 13move + 13hash + 13move) (5)
Considering the balanced utilization of system re-
sources in terms of total cost, it happens that it is

efficient for the total cost to write back the temporary
results to disk. The cost is as follows:

Probe Phase Cost2;ceq_tree
=~ max(lrllioseq + Iislioruny
Ir1llerans + [litlerans + |[2}irans,
TLlsptit + Tlmove + Tlhash + 71 % T25.0be
+ilaptic + ilmove + ilnash + |81 * T3[prope
+125ptit + 12move + 12hash + 12 % Tdprope) (6)

2.2.2 Strategies for Generating Balanced Seed-
Trees

In this subsection, the strategies for generating a
balanced seed-tree set are described in detail. There
are four strategies which are applied for generating a
balanced seed-tree by using the two criteria: the con-
suming condition and the memory fitting condition.
In the first strategy (strategy 1), the strongest con-
dition is applied to build a balanced seed-tree. That
is, as for the consuming condition, the maximum net-
work usage which does not exceed the I/0O cost is em-
ployed and, as for the memory fitting condition, all the
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hash tables and the temporary results fit in memory.

If there are relations which do not belong to the gener-

ated balanced seed-trees, looser restriction conditions

are adopted in strategies 2, 3 and 4.

strategyl
This strategy is responsible for generating a seed-
tree which fully consumes network bandwidth, even
if a generated seed-tree does not utilize fully mem-
ory.
In order to generate a seed-tree whose shape is a
kind of RD, find more than two relation combina-
tions which have a common join edge and whose
build phase hash tables and temporary results can
be held in main memory. Then, using equation(5),
find a base combination which satisfies the maxi-
mum network cost while the I/O cost is dominant
for total cost. We also find other combinations
which use less memory than the base combina-
tion, until the 1/O cost is a dominant factor of
total cost.
Until there are no relations which satisfy strategy
1, apply this strategy for generating balanced seed-
trees.

strategy2
This strategy is responsible for boosting the po-
tential memory utilization.
In principle, the shape of the balanced seed-tree
is a kind of RD. However, when the joinability
is small and the size of the intermediate relation
becomes smaller than the source relation, a left-
deep balanced seed-tree can be generated. Since
it is not necessary for a short left-deep tree to hold
multiple hash tables in memory, only a single hash
table and a temporary result are held in mem-
ory. Although a short left-deep tree does not fully
utilize memory, the chance of utilizing the rest of
memory increases when a final scheduling plan is
constructed from a balanced seed-tree set.
Find combinations of relations where a short left-
deep tree can be composed from the remaining re-
lations left over from strategy 1. Then find combi-
nations which satisfy the condition that the maxi-
mum memory utilization of a generated short left-
deep tree is smaller than the maximum size of any
source relation which belongs to this left-deep tree.
Until there are no relations which satisfy strategy
2, apply this strategy for generating balanced seed-
trees.

strategy3
This strategy is responsible for transferring data
streams through the network smoothly.
If there are some relations which do not satisfy
strategies 1 and 2, find the combination of rela-
tions whose dominant cost is the I/O cost of read-
ing the probe relation and writing the temporary
relation to disk. The reasoning for this strategy
is that once the network cost becomes a dominant
factor, there are many tuples waiting to be trans-
ferred to the target processor and I/O accesses
cannot be overlapped with network transfers.
This strategy is calculated from the two terms of
equation(6), that is the I/O cost term (the first
term) is larger than the network cost term. Until
the I/O cost is dominant, find a combination of
relations whose network cost is larger, but memory
utilization is less.

Until there are no relations which satisfy strategy
3, apply this strategy for generating balanced seed-
trees.

strategy4 ;
This condition is responsible for providing infor-
mation when makeRESULT makes the final schedul-
ing tree.
If some relations do not satisfy all of the above
strategies, find the combination of relations whose
hash tables or result relation can be held in mem-
ory.

for the others
Any relations which do not satisfy the four condi-

tion are used in makeRESULT.
After adopting these four strategies, there are sets

which consist of balanced seed trees generated by strat-
egy 1, 2, 3 and 4, and the remaining relations. These
sets are used to make a final plan.

3 Evaluation Results

In this section, we evaluate our method(BST) in
comparison with previous work such as LD, RD, Seg-
mented RD with MW and BC heuristics in [1] and
deep-tree with BC heuristics (BCM) which utilize main
memory for an intermediate relations proposed in [10].
Since the ZigZag tree proposed in [12] generates simi-
lar tree to BCM and it is not clear how to make up a
ZigZag tree, we could no include it in this evaluation.
As for the parallel dynamic programming method, we
take a full search version of dynamic programming in
order to get an optimal plan and to find the size of the
search space in an exhaustive manner. If the condi-
tion of pruning a branch is changed, the quality and
the search space of the dynamic programming method
is also changed. However, the pruning condition is not
clear in [10] and finding its condition is out. of the scope
of this paper. In order to evaluate the different parallel
plans and the many different parameters, we generate
synthetic databases and queries which are described in
the following subsection.

3.1 Parameter and Simulation Environ-
ment

As the performance metric adopted for evaluating
query plan is a normalized value which is defined as
the ratio of the elapsed time of the generated plan to
that of the optimal plan which is found through the ex-
haustive search. We calculate the elapsed time of each
method using the proposed cost formula. The system
parameters are shown in Table 3. We assume that the
CPU power is 100 MIPS and it takes 1 clock ticks per
1 instruction. As for the parameters shown in Table 3,
we take values from typical parallel machines and disks
which are available today. The hash join algorithm pa-
rameters such as probe, split or hash are similar to
those used in a previous study by Shekita, Young and
Tar[1[10]] and other hash-based join performance studies
in [8, 6].

In this simulation, in order to extract the charac-
teristics of each multi-way join plan, we generate the
acyclic and cyclic join graph pattern. The join graph
an([i .}o'm edge definitions are similar to those described
in [1].

We generated 5500 sample databases as a test bed.
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Description Value
number of nodes 16
clock rate of individual processor 100MHz
total memory size 32MB
data transfer rate of sequential read from disk | 4.8MB/sec
data transfer rate of random read and write | 2.4 MB/sec
to disk

data transfer rate through the network 24MB/sec
number of instructions to move a tuple from 50
disk buffer (network buffer) to local memory

number of instructions to split a join attribute 100
number of instructions to hash a join attribute 100
number of instructions to probe an entry of 500
hash table with a tuple

Table 3: Architecture and System Cost Table

The number of relations of each database is varied from
6 to 12 and the average number of relations is 8 which
is the default parameter in {10]. The relation size varies
from 10% of memory size to 200%. The join selectivity
varies from 0.0001% to 0.01%. In this paper, the join
selectivity means the ratio of the size of an intermediate
relation to the product of the size of the two operand
relations. In order to generate synthetic databases, the
above three parameters are determined at random and
the source relations are declustered over all disks uni-
formly. The join attribute of join operations are differ-
ent from each other.

3.2 Effect of Bounded Network Band-
width

In this subsection, we discuss how bounded network
bandwidth affects the result trees generated by our al-
gorithm. Figure 2 shows the scheduling trees of BST
for varying network bandwidths. To clarify the follow-
ing discussion, consider a very simple example query
of 8 relations whose profile is shown in Figure 2. The
sizes of all the both relations and intermediate rela-
tions are the same. Since the other algorithms such as
LD, RD, MW, BC and BCM are not affected by net-
work bandwidth, only the result of BCM is taken up
as a comparative example. The result plan generated
by BCM is also illustrated in Figure 2 to clarify the ef-
fect of network bandwidth. In Figure 2, the segments
and the balanced seed trees(bst), which are the unit of
parallel processing of BCM and BST respectively, are
indicated by the dotted regions. The cost of each re-
sult trees is calculated by suming up the costs of each
segment or bst.

Table 4 shows the total costs for the result trees and
cost of I/O accesses and network transfers for each seg-
ment and bst. CPU cost is omitted in this table, since
its cost is very small comparing with 1/O and network
costs. In order to easily compare the results of the two
algorithms, both I/0 access and network transfer costs
are normalized by the I/O access time of one tuple. For
example, the first column of segment 1 of BCM, which
is the I/O cost of the build phase of segment 1, is 3000.
That is, the 1/O cost of the build phase of segment 1 is
the same time required to read 3000 tuples from disk.
Also, the second column of segment 1 of BCM, which
is the network cost of the build phase of segmentl, is

BCM Join Graph(each relation size 100Dtwples
s Intermediate relation size 1000tuples)
gment2
\\

Memory Size 4000 uples

Figure 2: Generated Tree by Varying the Network Band-
width

600. That is, the network cost of the build phase of
segment 1 is the same time for reading 600 tuples from
disk.

From Figure 2 and Table 4, we find that the shapes
of the scheduling trees generated by our algorithm are
changed by varying the network bandwidth. In this
simulation, the shape of the result trees of the two al-
gorithm are the same when network bandwidth is five
times larger than the I/O bandwidth. However, when
the network bandwidth becomes small, the result trees
of our algorithm consists of several bsts. As shown
in Table 4, since our algorithm intends to balance the
consumption of bounded system resources, the I/O and
network transfer costs of the probe phase of each bst,
is almost balanced and the I/O cost is dominant. On
the other hand, the probe cost of segment 1 of BCM
becomes the dominant network cost. Thus, when the
network bandwidth becomes narrow, the cost of our al-
gorithm is the same as the cost in the case of high net-
work bandwidth. In contrast, the cost of BCM is dete-
riorated since BCM does not consider network transfer
costs.

3.3 Quality of Result Trees

In this subsection, we report simulation results and
show that our proposed method can generate higher
quality scheduling plans in comparison to the other
methods.

3.3.1 Quality of Result Trees under Bounded
Network Bandwidth

The cost shown in Figure 3 shows the total simu-
lation results. Since the cost of these results are nor-
malized by the cost of the best plan, the cost expected
for the best plan is 1. In Figure 3, each raw shows
the results for each method and the box size depicts
the percentage of queries whose normalized costs fall
within the indicated range. The size of the black box
in each row shows the percentage of generated plans
which were optimal. The quality of generated plan
of darker shaded boxes are better than lighter shaded
ones. The size of the white one shows the percentage of
plans whose cost is more than three times larger than
the optimal plan. For example, we take the LD case.
From the LD row, 59% of the cases generate the best
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algorithm | segment# Network Bandwidth : I/O Bandwidth
or bst# 5:1 2:1
Build Probe Build Probe
io cost | net cost | io cost | net cost | io cost | net cost | io cost | net cost
BCM segment 1 3000 600 1000 800 3000 1500 1000 2000
segment 2 3000 600 2000 800 3000 1500 2000 2000
total 9000 10000
BST bstl 3000 600 1000 800 1000 500 1000 1000
bst2 3000 600 2000 800 0 0 1000 1000
bst3 - - - - 0 0 1000 1000
bst4 - - - - 0 0 1000 1000
bst5 - - - - 1000 500 1000 1000
bst6 - - - - 0 0 2000 1000
total 9000 9000

Table 4: Cost of Result Trees by Varying the Network Bandwidth

LD
RD
MW
BC
BCM
BST
+ !
o 25 50 75 100%
.BNNII(CW-II» l.!(Coﬁ(‘l.ﬁ
1.0<Cost<= 1.1 15 <Cost <= 2.0
i 1.1 <Cost<=12 D 20<Cost<= 30
E 1.2<Cost<= 1.3 3.0<Cost

Figure 3: Quality of Generated Plans
- the case of bounded network bandwidth -

plan and 3% of the cases generate a plan whose cost is
3 times larger than that of the best case.

From this figure, we find that 90% of the results
generated by our proposed algorithm are the best plan.
Moreover the cost of the worst plan generated by our
method is 1.3 times smaller than that of the best case,
although the cost of the worst plan generated by the
other methods is 3 times larger than that of the best
case. From this observation, the quality of generated
plans of our method is superior to the others. It is
important for an optimizer to not only generate the
best plan regularly but also not to make bad plans.
From Figure 3, our algorithm can be assured to have
the strength to avoid generating bad plan.

On the other hand, more than half of the results
generated by RD, MW and BC are not good plans,
since their cost is 1.5 times larger than the optimal
one. This is because these methods do not consider
holding an intermediate relation in main memory for
the hash table of the next sub-tree.

One point of interest which can be observed from
this table is that results generated by LD and BCM
are either the best plan or a bad plan and there are
few intermediate plans generated by either algorithm.
This is because LD often assigns a relation whose size
is small to the bottom of the tree so that the size of
source and intermediate relations becomes larger near
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BC

BCM

BST

.BmPllnlCnn- Lo

W o<concta
1.1 <Cost<= 12
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[J 20<con<=30
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Figure 4: Quality of Generated Plans
- the case of the unbounded network bandwidth -

the top of the tree and the potential of their hash table
overflowing memory becomes high. BCM’s result are
similar to those of LD, since when the size of temporary
relations becomes large and the temporary relations
do not fit into memory, the generated tree of BCM
resembles the result of LD in tree shape.

3.3.2 Quality of Result Trees with Unbounded
Network Bandwidth

In this subsection, we show the simulation results
for unbounded network bandwidth. The unbounded
network means that the network bandwidth is sufficient
to handle all of the data streams smoothly. In this
case, our method’s balanced resource consumption is
not expected to provide significant improvements.

The cost shown in Figure 4 shows the simulation re-
sults. In this figure, the cost of the results are also
normalized as in the above figures. In Figure 4, each
row shows the results for each method and the shaded
areas depicts the percentage of queries whose normal-
ized costs fall within the indicated range. The size of
the black region in each row is the percentage of the
total generated plans which were the best plan.

From Figure 4, we find that the percentage of gen-
erated best plans by our proposed algorithm decreases
in comparison with Figure 3. The percentage of the
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TYPE | EXHAUSTIVE | OUR METHOD(BST) | % .
total 80640 235 0.29
type 1 89230 276 0.34
type 2 46080 195 0.24
type 3 92160 374 0.41
type 4 161280 377 0.23

_ Table 5: Search Space

best plan of our algorithm is almost the same as that
of BCM. However, the cost of the worst plan gener-
ated by our method is 2.0 times larger than that of the
best case, although the cost of the worst plan gener-
ated by the other methods is 3 times larger than that
of the best case. Thus, our algorithm is efficient when
the network bandwidth is unlimited. This is because
we consider not only network bandwidth but also the
utilization of main memory in order to introduce the re-
striction conditions for generating balanced seed-trees.
Thus, our algorithm can generate slightly better plans
than previous work when it cannot take advantage of
balancing the network transfers and I/O accesses.

3.4 Search Space

The size of the search space is another important fac-
tor for the optimization of multi-way joins. Of course,
the quality of generated tree is improved when the
search space becomes large. However, as pointed out
by [5], the explosion of the search space for the opti-
mization results in the algorithm being unrealistic. Al-
though our main objective for the proposed algorithm
is to manage system resource consumption by consider-
ing network bandwidth, we show that the search space
of our algorithm is small enough to be practical in this
subsection.

Table 5 shows the search spaces of our method and
an exhaustive method. The values in this table is the
average of the simulation results. From Table 5, we
find that the search space of our method is very small
in comparison with an exhaustive method. Compar-
ing the results of our method for type 1 and type 2
databases, the search space of type 2 is smaller than
that of type 1, since the relation size of type 2 is large
and the number of balanced seed-trees decreases from
using the restriction condition of memory utilization.
As for the results of type 3 and type 4, since the strate-
gies for reducing a join graph are more numerous than
those of type 1, the search space increases. Especially,
the search space of an exhaustive method increases
drastically when the number of join edge increases.
However, the search space of our method for type 4
does not increases rapidly, since the restriction con-
ditions suppress generating too many candidate seed-
trees.

4 Conclusions

In this paper, we consider multi-way join process-
ing in a shared-nothing environment and propose how
multi-way join scheduling is constructed efficiently from
a given resource environment such as memory size, net-
work transfer and CPU processing costs. From the
point of view of large database systems on a shared-
nothing system these days, it is important for pipeline

processing of multi-way joins to transfer large amount
of data through the network smoothly. Our algorithm
first generates balanced seed tree seeds which fully con-
sumes the network bandwidth for pipeline processing.
Then, these balanced seed tree sets are combined with
each other to finally produce an optimal query tree.

The proposed new multi-way join plan is evaluated in
comparison with previous work by using the introduced
cost formula. From the evaluation results, not only is
the quality of the proposed method better than previ-
ously presented algorithms such as left-deep, right-deep
and segmented right-deep trees, but the quality of our
algorithm does not deteriorate comparatively. Espe-
cially, when the network bandwidth is bounded, our
algorithm is more robust than other methods which do
not take into account the network bandwidth. More-
over, even if the network bandwidth is not limited, our
algorithm generates more best plans than the other
methods and the quality of the proposed algorithm
does not deteriorate. Although our method can gen-
erate numerous best plans, the search space of our al-
gorithm is small enough to be practical in comparison
with the exhaustive method.

We are planning to implement our algorithm on a
commercial parallel machine, which is Fujitsu AP-1000,
and investigate the effect of overlapping the I/O ac-
cesses and the network transfers on a real machine.
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