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Data Dependence Speculation Combining
Memory Disambiguation with Address Prediction
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Data dependence speculation using effective address prediction is proposed. A load instruction is speculatively
executed with load address prediction, and instructions which are dependent upon the load instruction are also
speculatively executed. A store instruction is speculatively resolved with store address prediction, and instructions
which are dependent upon the store instruction are also speculatively executed. From the experimental evaluation,
we have found that the data dependence speculation combining memory disambiguation with address prediction
is effective on an out-of-order execution processor.
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1 Introduction

Data dependences are the obstacles limiting the in-
struction level parallelism (ILP). There are two types
of the dependences. One is the dependences through
the registers, and the other is those through the mem-
ory. Among the dependences through the registers,

the write after write (WAR) and write after read (WAR)

hazards can be eliminated using register renaming[11,
22], but the read after write (RAW) hazard can not.

For the dependences through the memory, however, -

there are not any techniques such as register renam-
ing. This is because the effective address for a required
datum can not be determined until the program is
executed. Thus, any succeeding load and store in-
structions have to wait for that the preceding store
instruction is resolved. This is the ambiguous mem-
ory dependences disturbing the exploitation of ILP. In
summary, there are two serious data dependences be-
tween instructions. One is the RAW hazards through
the registers, and the other is the ambiguous memory
dependences.

So far, there are few proposals to remove these
dependences. Moreover, most of which are too com-
plicated to be implemented. In this paper, we propose
a simple mechanism for data dependence speculation
using effective address prediction. A load instruction
is speculatively executed with load address prediction,
and instructions which are dependent upon the load
instruction are also speculatively executed. A store in-
struction is speculatively resolved with store address
prediction, and instructions which are dependent upon
the store instruction are also speculatively executed.
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The organization of the rest of this paper is as
follows. Section 2 surveys previously proposed re-
lated works. Section 3 explains a data speculation
method combining address prediction with memory
disambiguation. In Section 4, the evaluation method-
ology is presented and the effect of the data specula-
tion is evaluated in Section 5. Finally, our conclusions
are presented in Section 6.

2 Related Work

The problem of the ambiguous memory dependences
can be addressed by static dependence analysis and by
dynamic memory disambiguation. Static dependence
analysis is conducted during compilation[5]. In many
cases, its analysis is limited due to the lack of dy-
namic executing information. Dynamic memory dis-
ambiguation resolves the dependences during execut-
ing programs(8, 10, 16]. One of the problems included
in the dynamic memory disambiguation is the code
explosion due to correction codes for recovery action.
The address resolution buffer (ARB)[6, 7] can re-
solve the speculative memory references and ambigu-
ous memory dependences by assuming that the ad-
dresses of succeeding memory instructions are differ-
ent from that of the preceding store instruction. Thus,
it is possible to execute memory instructions in out-
of-order fashion. W'hm the assumption is not true,
the correcting sequence should be executed.
Moshovos et al.[14, 15] proposed the address con—

flict prediction by makmg use of the dynamic sequence

history. Our proposal is similar to them. However,
their hardware structure is very complicated.



There are many proposals predicting the effective
address of load instructions [1, 4, 9, 17, 18, 20, 23].
Most of them|[1, 4, 9, 17, 18] do not speculatively ex-
ecute the instructions following the load instructions.
Some of them[20, 23] execute speculatively the follow-
ing instructions, but do not take advantage of the store
address predlctlon

Lipasti et al.[12, 13] proposed the value prediction
based on value locality. They extended the branch
prediction mechanisms to predict the values.

3 Data Speculation Combining Memory Disambigua- ‘

tion with Address Prediction

In this section, we propose a data speculation mech-
anism. In order to predict the effective address, we
utilize the reference prediction table (RPT)[3]. For
the preparation of our proposal, firstly in this section,
we explain the RPT. Next, we describe the data spec-
ulation using address prediction. And lastly, we ex-
plain the data dependence speculation combining the
memory disambiguation with address prediction.

3.1 Reference Prediction Table

The RPT, which has a similar structure with instruc-
tion cache, is proposed by Chen et al. for hardware
prefetching[3). We apply the RPT to predict the effec-
tive address because of its simplicity. The RPT keeps
track of previous memory reference. An entry of the
RPT is indexed by the instruction address and holds
the previous effective address (pred_addr), the stride
value (stride), and the state information (state). Fig-
ure 1 shows the RPT structure. The stride is the
difference between last two data addresses generated
by an instruction. The state information encodes the
past history and indicates whether next prefetching is
initiated.

The state information is decided according to Fig-
ure 2. Note that the state transition described in Fig-
ure 2 is different from the original one proposed in
[3]. There are four states, which are predict, weakly
predict, no-predict, and weakly no-predict.
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Figure 1: Reference Prediction Table

The prediction address is generated as follows. The
program counter (PC) indexes the RPT. The previous
effective address and the stride value are acquired from
an entry of the RPT indexed by the PC, if the tag
~ field is matched. The prediction address is the sum
of pred_addr and stride. The state information is also

Figure 2: State Transition of RPT

acquired. If the state is predict or weakly predict, the
prediction address is valid. Otherwise, the address is
invalidated.

Next, we explain the state transition of the RPT. It
is quite similar to the two bit saturated counter (2bC)
used by the branch predictors. If the prediction is
correct, the counter is incremented. Otherwise, it is
decremented. When the most significant bit is 1, the
state is (weakly) predict and thus the predicted address
is valid. The reason why we choose the 2bC scheme is
that it is simple to be implemented.

3.2 Data Speculation with Address Prediction

Firstly, we explain the speculative execution using load
address prediction. By speculatively resolving load in-
structions, the length of the data dependence path can
be reduced. In order to predict the effective address,
the RPT is accessed during the decode stage. This is
different from the previous proposals[l, 4, 9, 17] which
predicts the effective address during the fetch stage.
The difference is due to the purpose of the address pre-
diction. Our goal is not to execute a load instruction
in the earlier pipeline stages, but to prevent a unre-
solved load instruction from disturbing the following
dependent instructions. Due to the policy that the ad-
dress prediction is performed during the decode stage,
the useless prediction is prohibited when a load in-
struction is about to be issued. The pipeline diagram
is shown in Figure 3'.

[ Feton [Decods Issue | Exec [ Retire |

Figure 3: Pipeline with RPT

The RPT indexed by the PC is accessed at the be-
ginning of the decode stage. The predicted address is
corresponded with the load instruction and held un-
til the exec stage. When the actual address is gen-

1The pipeline u a simple structure for easy understand-
ing. Actually, some instructions might be ted in multipl
stages.




erated in the exec stage and it is same to the pre-
dicted address, the prediction is succeeded. In such a
case, the load instruction need not perform any mem-
ory access. If the actual address is different from
the predicted address, the misprediction occurs and
the recovery process has to be performed. The load
instruction must be executed completely, i.e. mem-
ory access is occurs, and the instructions dependent
upon the mispredicted load instruction are squashed
as shown in Figure 4. In the figure, the instructions
marked with * have to be squashed. There are two
strategies to squash dependent instructions. One is
squashing all instructions following the mispredicted
load instruction (Figure 4a), and the other is squash-
ing selectively the instructions which are dependent
upon the mispredicted load instruction (Figure 4b).
Even though the former has the penalty to re-execute
independent instructions, it is simpler and easier to
implement than the latter. Actually, it is possible for
the former scheme to utilize the recovery mechanism of
the branch misprediction. In Section 4, we will choose
the former for evaluation.

1d rl <-r10(0) Id rl <- r10(0)

add 15 <-r8 + rd« add r5<r3+rd

add r2<-rl +rbx add r2<-rl +rb«

fadd fl <-fl + 2% fadd fl <-fl + 2

st r2, r10(0) = st r2, r10(0) =
(a) (b)

* squashed instruction

Figure 4: Mispredicted Load Instruction

3.3 Combining Memory Disambiguation with Ad-
dress Prediction

Next, we propose the data dependence speculation
by combining the memory disambiguation with the
address prediction. The effective address of an un-
resolved store instruction is predicted and the store
instruction is speculatively resolved. Thus, load in-
structions which probably cause the conflict of mem-
ory reference can be executed before the store address
is generated. Note that any store instructions are not
speculatively executed.

Similar to the load address prediction, a store ad-
dress is predicted during the decode stage. It is not
the purpose to execute the store instruction specula-
tively. Our goal is resolving the store instruction spec-
ulatively and prevent it from disturbing the following
load instructions which is dependent upon. the store
instruction due to the ambiguous memory reference.
If a load address is different from the predicted store
address, the load instruction can be executed specula-
tively. If a store instruction is about to be issued, the
store address prediction is not performed. The dia-
gram is as same as that of the load address prediction
shown in Figure 3.

When a store address prediction fails, the recov-
ery process must be performed. The probable depen-
dent instructions has to be squashed. For this pur-
pose, there are three schemes as shown in Figure 5.

In the figure, the instructions marked with * are the
squashed instructions, and those marked with @ refer
to same memory location. The schemes are (i) the

scheme squashing all instructions following the mis-

predicted store instruction (Figure 5a), (ii) the scheme -
squashing all instructions following the load instruc-
tion whose address conflicts with mispredicted store
address (Figure 5b), and (iii) the scheme squashing
selectively the instructions which is truly dependent
upon the store instruction (Figure 5c). Even though
the first one has the penalty to re-execute indepen-
dent instructions, it is simplest and easiest to imple-
ment among them. Actually, it is possible to utilize
the recovery mechanism of the branch misprediction.
In Section 4, we will choose the first scheme for eval-
uation.

@st rll, r10(0) @st rll, r10(0)
add r5<-r3+rdx add r5<-r3+r4
Id  r6<ri(0) = 1d 16 <- r1(0)

@ld r7<-r50) *+ @ld r7 <-r5(0) «
fadd fl <-fl +f2 * fadd fl <-fl +12 «
add r2<-rl +r7= add r2<-rl +r7«

(a) (b)

@st rll, r10(0)
add r5<-r3+r4
ld r6<-rl(0)

@ld r7 <-r5(0) *

@ addre i
Bdd A<+ address c?nﬂnct .
add r2<-rl +r7+ *squashed instruction
©

Figure 5: Mispredicted Store Instruction

3.4 Pipelined Reference Prediction Table

Since the RPT has a similar structure to cache, the
access time of the RPT may dominate the cycle time
of the processor. Furthermore, in order to predict
the effective address, the addition must be performed.
Thus, the access to the RPT may be on the critical
path. In such situation, the RPT can be pipelined and
the access to the RPT is started in the fetch stage as
shown in Figure 6. For example, it is possible to im-
plement the RPT which accesses the data array dur-
ing the fetch stage and calculates the effective address
during the decode stage.
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Figure 6: Pipelined RPT



4 Evaluation Methodology

In this section, we describe the evaluation methodol-
ogy by explaining a processor model and benchmark
programs.

4.1 Processor Model

We evaluated the effect of the proposed mechanism
by using the SimpleScalar tool set (version 1.0.2)[2].
The SimpleScalar architecture is based on the MIPS
architecture, and the cycle-by-cycle simulator is exe-
cuted on a SPARCstation. The baseline model is an
out-of-order issue superscalar processor based on the
register update unit (RUU)[21]. The configuration of
the baseline processor is summarized on Table 1. The
penalty for the address misprediction is assumed to be
3 cycles.

Table 1: Baseline Processor Configuration

Tetch Width | 8 instructions, interleaved sequential

Files 32 32-bit floating point registers

Branch 512 set, 2way set-associative BTB,

Predictor gshare scheme, 12-bit, BHR, 4096 entry
PHT, 3 cycle miss penalty

Instruction 64 entry instruction queue,

Windows 8 entry load/store queue

Tssue Width | 8 instructions

Functional 51ALU’s, 1 IMUL/DIV, 2 1d/st units,

Units 2 fALU’s, 2 fMULs, 2 fDIV/SQRT’s

FU Latency | IALU 1/1, iMUL 3/1, IDIV 35/35,

(total/issue) | Ld/St 2/1, fADD 2/1, fMUL 3/1,
fDIV 6/6, fSQRT 6/6

“Regster 32 32-bit fixed point registers,

T-Cache 64K 4way set-associative, 32 byte blocks,
2-port, 6 cycle miss penalty
D-Cache 64K dway set-associative, 32 byte blocks,

2-port, write-back, non-blocking load,
hit under miss, 6 cycle miss penalty

L2 Cache 1deal

RPT 1024 entry, direct-mapped

4.2 Workioad

The SPEC92 benchmark suite is used for this study.
The reference input files which are provided by SPEC
are used with slight modifications. Table 2 shows the
summary. The Fortran programs were converted to C
programs using AT&T F2C (version 1994.11.03), and
then all programs were compiled by GNU GCC (ver-
sion 2.6.3) with the optimization option, -03. Each
program was executed to completion or for the first 1
billion instructions.

5 Experimental Results

This section presents the experimental results. Firstly,
we show the improvement of processor performance.
For measuring performance, we use the committed in-
struction per cycle (IPC). And next, the prediction
accuracy is discussed.

Table 2: Benchmark Programs

enchmark Tnput Modification
008.espresso || bca.in
[022.1i L-input.Isp | short mmput
023.eqntott int_pri_3.eqn
026.compress || in
072.5c loada3
[085.gcc cexpi
013'spice2gb || greycode.in [ short input
015.doduc doducin
034.mdljdp2 || mdlj2.dat MAX STEPS=250
[ 039.waveb
47.tomcatv =12
048 0ra params TTER=15200
[052.alvinn =
56.ear _args.short
077.mdljsp2 || mdlj2.dat MAX_STEPS=250
078.swm256 | swm256.in ITMAX=120
089.su2cor su2cor.in short input
090.hydro2d || hydro2d.in | short input
093.nasa7
4.fpppp natoms short mmput

5.1 Performance Improvement

Figure 7 shows the improvement of processor per-
formance. The IPC of the evaluated models are nor-
malized by that of the baseline model. For each group
of four bars, the first bar (see from left to right) indi-
cates the performance of the baseline model. Only use-
ful instructions are considered for counting the IPC.
Next bar indicates the performance of the model per-
forming the load address prediction. Next presents
the performance of the model performing the store ad-
dress prediction and speculative memory disambigua-
tion. The remaining bar shows the performance of the
model -performing the load and store address predic-
tion and speculative memory disambiguation.

As can be seen in Figure 7, the data dependence
speculation with load address prediction is very effec-
tive. The performance improvement is up to 23.6%.
This explains that the data dependence path including
load instructions is one of the critical paths limiting
the exploitation of the ILP.

On the other hand, the speculative memory dis-
ambiguation using store address prediction has lit-
tle contribution. The improvement of the ILP is less
than 5%. Furthermore, in the cases of 023.eqntott,
052.alvinn, 078.5wm256, and 094.fpppp, the proces-
sor performance is slightly degraded. The reason why
the speculative store resolution is not effective is as
follows. The recovery process is performed whenever
the predicted store address is not correct. However, it
is not always necessary. When the store.address pre-
diction fails, there are four situations according that
there are address reference conflicts or not. The situ-
ations are (i) the misprediction results in the address
conflict and actually there are not any conflicts, (ii)
the misprediction results in the conflict' and actually
there is at least one conflict, (iii) the misprediction
results in no conflict and actually there are not any
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Figure 7: Performance Improvement

conflicts, and (iv) the misprediction results in no con-
flict and actually there at least one conflict. Only case
(iv) needs the recovery process. In the cases of other
situations, it is not necessary to squash instructions
following the store instruction whose address is mis-
predicted. The squashing is not only unnecessary but
also harmful.

The store address prediction is not effective when
it is performed alone, however, the effectiveness is in-
creased when it is combined with the load address
prediction. Especially, 078.5vm256 and 089.su2cor
are improved dramatically by combining the load and
store predictions. The performance improvement when
the speculative memory disambiguation is combined
with the load /store address prediction is up to 24.7%.

5.2 Prediction Accuracy

Table 3 shows the prediction accuracy for each pro-
grams. The first column shows the name of each
benchmark program. Next two columns indicate the
address prediction accuracies when only load instruc-
tions are predicted and when only store instructions
are predicted. The last two columns show the accu-
racy when load and store address predictions are com-
bined. The prediction accuracy is significantly high,
even for the simple prediction mechanism of the RPT
described in Section3. In general, the prediction for
the floating point programs are more accurate than
that for the integer programs. However, there seem to
be no correlation between the performance improve-
ment and the prediction accuracy. In order to inves-
tigate the relation between the performance improve-
ment and the prediction accuracy, further study eval-
uating the ratio of the useful speculative execution per
all memory operations is needed.

6 Concluding Remarks

We have proposed the speculative execution for data
dependences. By combining the memory disambigua-
tion and the address prediction, the unresolved store
instructions are speculatively disambiguated and the
probable dependent load instructions are speculatively
executed. In order to predict the effective address, we
utilize the RPT proposed for the hardware prefetch-
ing. From the experimental results, the RPT has

y
e5 ora ear swm256  hydro2d feppp
fomcatv  alvinn mdljsp2  su2cor nasa7
Table 3: Prediction Accuracy
Benchmark Load | Store | TLoad/Store
Load | Store
[008.espresso || 91.34 | 88.99 | 91.33 | 89.03
022.1 86.74 | 82.50 | 86.55 | 93.93
023.eqntott 92.69 | 88.29 | 92.70 | 86.70
026.compress || 74.26 | 86.04 | 74.96 | 84.78
072.5c 86.69 | 83.74 | 86.78 | 84.35
| 085.gcc 84.78 | 89.67 | 84.89 | 89.60
013.spice2gb || 97.57 | 96.17 | 97.56 | 96.37
015.doduc 92.78 | 92.31 [ 92.81 | 92.51
034.mdljdp2 |[ 91.70 | 94.03 | 91.70 | 94.08
039.waveb 98.13 | 99.23 | 98.13 | 99.23
047.tomcatv || 98.49 | 99.33 ] 98.49 | 00.34
048.ora 99.15 | 99.99 | 99.15 | 99.99 |
052.alvinn 99.51 | 99.51 | 99.51 | 99.53
056.ear 97.11 [ 96.58 | 97.11 | 96.68 |
077.mdljsp2 89.97 | 93.33 | 90.04 | 93.57
.swWm. [99.337[99.38 | 99.34 | 99.38 |
089.su2cor 99.09 | 99.03 | 99.07 | 98.95
090.hydro2d || 88.24 | 91.83 | 88.31 | 91.81
93.nasa 99.28 | 99.96 | 99.28 | 99.96
094.fpppp 96.24 | 97.54 [ 96.23 | 97.17

enough accuracy to improve the processor performance.
When only load instructions are speculatively exe-
cuted, the improvement is up to 23.6%. This explains
that the data dependence path including load instruc-
tions is one of the critical paths limiting the exploita-
tion of the ILP. On the other hand, the speculative
memory disambiguation using store address prediction
has little contribution. The improvement of the ILP
is less than 5%. In order to make speculative store ad-
dress resolution to be effective, it is necessary to study
the precise detecting scheme for mispredicted mem-
ory disambiguation. When the load and store pre-
dictions are combined with each other, that is when
the memory disambiguation and the address predic-
tion are combined with each other, the improvement
of processor performance is up to 24.7%. It confirms
that the proposed method is useful. .

One of the future study dealing with the data de-



pendence speculation is the speculative execution of
store instructions. For that purpose, special hardware
support such as ARB[7] is required. The study of the
trade-off between the hardware cost of the ARB and
the performance improvement is necessary. From the
experimental results, the prediction accuracy for inte-
ger programs are relatively low. It should be investi-
gated alternative address prediction methods such as
the scheme based on the register specifier buffer[19].
The selective squashing scheme is also under investi-
gation. If the instruction which must not be squashed
are reused, the effectiveness of the data dependence
speculation can be increased.
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