HEBT—+*77F+ 131-7
(1998. 9. 21)

Self-Timed Implementation of Boolean Functions

Mart Saarepera KH K
WRIERE FHETEER

T 152-8552 REA HEBX KM 2-12-1

5% U FAPKERKRZ Oy 2 2/KL200, BESRORT 2N FEZACURTLEYHS. 55
7S AQFAPREHIE, ZOLIRELEETEZOREARASPENTE. KF{TIR, 20&LI27F7A0FE
FAPRMAASCEROERF LI OVTRET 5. K, 20X) LEREERT 010}, ABOREEER
ETAAMEBFLETH ok, 0 L) 2AMERE, OBEEEMCL, ZOoER, BFEEOETEZR F
WCHE, HERTH*EL(HETEL) Z7 U avEFLIREL, 2070 2V EEHET 5 HBA N INE
B LICERATEL I LERT.

*—J—F FERMAMAESHLEEE, delay-insensitivity, 72, IV -

Self-Timed Irhplémentation of Boolean Functions

Mart Saarepera " Tomohiro Yoneda

Department of Computer Science
Tokyo Institute of Technology
2-12-1 Ookayama Meguro-ku Tokyo 152-8552, Japan

Abstract Since asynchronous circuits have no clock, the completion of the computation must be notified by
using some special ways. There exists a class of. asynchrohous’ circuits which generate such completion signalé by
themselves. These circuits function under a signaling scheme called protocol. In this paper, we discuss how to
implement.such a class of asynchronous circuits. In the previous works, the implementation of such circuits needs
asynchronous automata which make the circuits complicated and slow. In this paper, we propose a new protocol
which guarantees that environment can correctly know the completion of the computation, and show that circuits

which satisfy the protocoi can be implemented without involving asynchronous automata.

key words Asynchronous combinational circuits, delay-insensitivity, protocol

"1l Introduction

Implementation of Boolean functions is the basis for
computation. If computation is synchronized by clock
then the Boolean circuits implement the Boolean func-
tions. Implementation of Boolean functions in asyn-
chronous circuits is not so straightforward. Since asyn-
chronous circuits have no clock, the completion of the
computation must be notified by using some special
ways. One way of doing this is to use coded inputs and
outputs and to organize the work of the circuit so that
the computation starts in a neutral state, then the coded
inputs are given to the circuit, and after the coded out-
puts appear in the circuit, the same coded inputs are
given to the circuit again which take the circuit back
to the neutral state. This signaling scheme is called
2—phase protocol {7]. It consists of a computation phase
followed by a reset phase. [3], (5], [1], and [2] have sug-
gested asynchronous implementations of Boolean func-
tions using 2-rail code which satisfy this 2— phase proto-
col. However, all the solutions involve asynchronous au-
tomata, which make the circuits complicated and slow.
The existence of solutions not involving asynchronous
automata has been an open question. In this paper we
suggest two such solutions.

We begin this paper with the definition of a protocol
and the conditions for a protocol to be delay-insensitive.
The delay-insensitivity of a protocol guarantees that en-
vironment can correctly know the completion of the com-
putation of a circuit which satisfies the protocol, inde-
pendently of the delays associated to the circuit. We
also show several conditions for a circuit to satisfy a

delay-insensitive protocol.

Then, we suggest a new delay-insensitive protocol and
show that circuits which satisfy the protocol can be
implemented without involving asynchronous automata.
The protocol is obtained by extending the 2 —phase pro-
tocol, and consists of a computation phase followed by
several reset phases which are necessary to take circuits
back to the initial state.

Finally, we suggest that the above protocol and cir-
cuits can be improved by overlapping a computation

phase and a reset phase. Consequently, the number of

the reset phases in the protocol is reduced.

2 Protocol

We consider a circuit and an environment that com-
municate with one another by sending and receiving sig-
nals. There are two types of signals: from the envi-
ronment to the circait, which we call input signals, and
from the circuit to the environment, which we call out-
put signals. It is assumed that signals are conveyed via
wires.

An underlying model for specify-
ing circuit-environment communications in [6] is trace
structure. There are several ways of representing trace
structures. For example, I-nets, which is a class of Petri-
nets, interface state graphs, and regular expressions are
representations of trace structures. Below we define a
model we call protocol, which is an abstraction of inter-
face state graphs. We prefer it to other representations,
because it allows more compact specifications.

The definition of protocol is parametric to input and
output indexes. It is assumed that inputs and outputs
are unidirectional. Let i (o) denote a set of input wires
(output wires) of a circuit-environment model. We call
input wires inputs and output wires outputs. Each input
and output wire takes values from the same set D. We
call an input valuation in the set I = [{ — D], an input
state, and an output valuation in the set O = [0 — D],
an output state.

A protocol is a tuple P = (D, I¢p,Oc¢p, R), where D
is a set of values, Icp is a set of input codeword classes,
Ocp is a set of output codeword classes, and R a protocol
relation.

The set of input codeword classes is a set of nonempty
sets of input states, i.e. Icp C P([), where P is the
power set operator. So, each input codeword class is a
set of input states. We assume that the input codeword
classes are independent, ie. VYz,y € Icp.2 CyVy C
z = z = y. Theset of output codeword classes is defined
similarly. We call I x O the set of input-output pairs. The
protocol relation or protocol in short, is a set. of tuples
of input-output pairs R C (I x O) x (I x O).

In this paper, we assume that the following conditions
for a protocol hold:

o The set of input codeword classes is the same as the
set of output codeword classes. We call B = Icp =
Ocp the set of codeword classes.

o The set D of values of a protocol has an ordering
structure which can be extended to the states, to
the set (I x O), and to the codeword classes.

—48—

Now, we define delay-insensitivity of a proto-
col. Delay-insensitivity is defined in [6] according to
the Foam Rubber Wrapper Postulate from [8]. A
mechanism-environment model is delay insensitive if
there are no computation and transmission interferences.
In [6], the sufficient and necessary requirements for trace
structures to be delay-insensitive are given.

Protocol is a representétion of a subclass of trace
. structures. Here, we give the sufficient conditions for
a protocol to be delay insensitive.

For codeword classes X,Y € B, we call a set (X b
Y) C (Ix0)x(IxO)a phaseif the following conditions
hold:

e X<YoaX>Y,

e Va,c € I¥hd € O.(abed) € X DY), X <Y =
k,lecXIhjeYhi<ab<ed<hjb<ad<c,

o Ya,c € I¥b,d € O.(abcd) € (X BY),X>Y =
Il € X.3h,j €Ykl >ab>cd> hjb>a,d>c

e Va,ce € IVbdh € Ofabed) € (X b
Y),(cd,eh) € (X > Y) = (ab,eh) € (X > Y),

A protocol P = (D, B, R) is delay-insensitive if the
protocol relation R can be uniquely partitioned into
phases, and for an injective function p : B — B on
the codeword classes such that p(X) =Y & (X b Y),
vX € B.p!Bl(X) = X holds. .

For example the 2 — phase protocol for ternary logic
is a tuple 2 — phase =< D, B, R >, where D = {0,1,5}

with the ordering <= {(S,1),(S,0)}, B = {8, C}, with -

= {Az.S} and C = {A.d|d = 1V d = 0}, and the
protocol relation is R = (S > C)U(C b S). 2 — phase
protocol is delay-insensitive.

3 Combinational Circuits

Let T be a set of elementary circuits. We call elemen-
tary circuits gates. With each gate a number of inputs
is associated.

Let i be a set of inputs. We define terms T' by induc-

tion:
ecachre€iisatermin T.

e if Ais a n input gate and £, ...,tn—1 are terms, then
A(tg, .- tn-1) is a term in T'.

A set o of outputs is a nonempty subset of terms T. A
set of outputs is also called a circuit. So, C = Py(T) is

the set of circuits, where P; is the nonempty power set
operator.) ’

For example, in case we have one gate & = {NAND}
and inputs 7 = {a,b,c}, then {a, NAND(a,a)} is a cir-
cuit with two outputs and {NAN D(a, NAN D(a,a))} is
a circuit with one output.

Let a domain of values the inputs and outputs can
take be D.

For any circuit C € C there is a unique function (_)g :
I — O which maps an input state £ € I to an output
state (z)% € 0. We call this function computation. (It
is usually called truth table).

We also say that the circuit C is implemented in D.

For each circuit C € C implemented in D, there is a
corresponding circuit input-output state relation R¢ C
(I x 0) x (I x 0). An environment assumed for this
relation has no restrictions for input changes.

We say that a circuit C satisfies a protocol P if Va,c €
I,¥b,d € O.(ab,cd) € P = Yk, h € O.(ak,ch) € Rc =
(ak,ch) € P. ‘

Sub-circuits of a circuit C' € C can be made observable.
We call such a circuit Cy which is sub-circuit closed a
transparent circuil.))

A circuit C is called monotonic relative to an ordering
<ifVa,be La<b=(a)f < (b '

Theorem 1t A circuit C satisfies a protocol P when
Cr = C,C is monotonic relative to the ordering relation
of P, and (¥X € B,Ya € X.(a)¥ € X)

According to Theorem 1 the class of transparent 2-rail
circuits satisfies 2 — phase protocol.

Theorem 2: A circuit C satisfies a protocol PiffCis
monotonic relative to the ordering of P, (VX € B,Va €
X.(a)¥ € X) and (X, Y. (X BY) C P = (Va,c €
1,vb,d € O.((ab,cd) € (X b Y) and c ¢ Y) = () ¢
Y)).)

Theorem 3: If a binary gate ¢ € X satisfy a protocol
P and circuits Cy, Cs € C, satisfy the protocol P, then
o(Cy, Cy) satisfies the protocol P.

4 Implementation of Boolean
Functions Under 5-phase Pro-
tocol ‘

We consider a set of values
Xo = {0,1,4,D,M,N,B, A, B} and an embedding of
X, into binary tuples B* = B x B x B x B as defined
in the Figure 1, so that the ordering on B* is preserved.

wr|w|[zlzlo|eo|[~]»
e
=

H 1: Embedding of X; into B*. -

Values 0 and 1 of Xg denote the embedded binary
values of B = {0,1} into Xj.

We define a 5—phase protocol as a tuple 5—~phase =<
Xg,B,R >. The ordering on Xy is the one defined by
the embedding of Xy into B% The defined codeword

classes are

B ={ C={Xzdld=1Vvd=0},

A = {z.4},
B = {\z.B},
A = {\z. 4},
B = {’«.B}}.

It is clear from the definition that the codeword classes
are independent. The elements of the codeword class C
are all binary valued state. Codeword classes A, B, A,
B are one element sets. We call the elements of these
codeword classes the neutral states.

The protocol relation is defined as R = (A > C) U
(CepBUBBAUAR BB)U®B > A). ‘

5 — phase protocol is delay-insensitive by definition.

We consider a set of gates ¥ = {V, A, —} and the set
Xy as the domain of values the inputs and outputs of
the circuits can take. It is not important that we choose
these gates, because we are going to give interpretations
for a general binary gate and an inverter gate.

The definitions of the general binary gate and the
unary gate —x, are given in the Figure 2.

The general binary gate is not. completely defined.
The input values of the undefined places in the definition
of the general binary gate can never be given simultane-
ously to a binary circuit under the 5 — phase protocol.
In case we talk of some particular implementations we
must define them completely. Our aim is to demonstrate
the possibility of self-timed implementation of Boolean
functions, and for this purpose the partial definition of
the gates is sufficient.

| (o1&t

NEEE
>
>

|
1
[
I
|

[
NEICREAE]

o v |o |

OO o oo |T
Ui jo oo v
U |g|o|o o |o

wlw o oo |o|o
|
|
wixlw|z|z (o]~ o[>
i 2|z lo|o|—|» |

wirlw |z (2 g |~ |o |»
|

NIEYIE]
wi>1 |

wi
I
|
|
|
|
l

B 2: Definitions of a binary gate of Xg and —x,.

The box denoted BG in the Figure 2 must be
filled with the interpretation of a corresponding binary
Boolean gate. The gates of T satisfy 5 — phase protocol.

The circuits generated by & function under 5 — phase
protocol as follows. Computation of a circuit C starts
with the input and output states being neutral states
Az.A. In the first phase of the computation the input
state of the circuit is changed to a codeword from the
codeword class C. The output state of the circuit is
following the change to a codeword. The first phase will
end with the input state z € C and output state (z)g €
C. The rest of the phases are devoted to changing the
input and output states back to the neutral state A.

We can say that we have one computation phase per
four reset phases. Can we do better?

Observing the lattice structure in the Figure 1, we see
that the phase (A b B) of the 5 — phase protocol can be
replaced with the phases (A 1>C) and (C t>B) assuming
that we can have two types of codewords. In the next

section we present a solution for this protocol.

5 Implementation of Boolean
Functions Under 2 x 3 — phase
Protocol

We consider a set of
There are two types of values in the set X;4. Values
with over-line and values without over-line. We define
an embedding of X4 into B* similarly to the embedding
Xy into B%. The definition is in the Figure 3.

We also assume an ordering on X4 defined by the em-
bedding. There are over-lined and non-over-lined repre-
sentations for the binary values in Xy4. '

We define a 2 x 3 — phase protocol as a tuple 2 x 3 —

0000 IHI
0010 | 1110
0001 | 1101
0011 | 1100
0110 | 1010
0101 | 1001
0111 | 1000

w(z(zlo|e [~

3: Embedding of X;4 into B*.

phase =< X14,B,R >. The defined codeword classes
are

B ={ C={irdld=1vd=0},

A = {Az.4},

B = {\z.B},
T={edd=Tvd=0),
A ={)z A},

B = {)z.B}}.

The codeword classes are also over-lined and non-over-
lined as are the codewords. Similarly to the 5 — phase
protocol the codeword classes A, B, A, B are one ele-
ment sets and the elements of these classes are called
the neutral states.

The protocol relation is defined as R = (A b C)U
(C>B)UB PAUAR BT)U(C BB)U(B b A).

The circuits under this protocol function in two
modes. In the over-lined mode and in the non-over-lined
mode.

2x 3—phase protocol is delay-insensitive by definition.

We consider the same set of gates & = {V,A, =} as in
the previous section. The set of the values the inputs
and outputs of the circuits can take is X14. The partial
definition of a general binary gate is given in the left
table in the Figure 4. The definition involves the non-
over-lined values. The definition of the general binary
gate for the over-lined values is symmetric to the defini-
tion of if for the non-over-lined values. The box denoted
by BG in the Figure 4 must be filled with the interpreta-
tion of the corresponding binary gate. The inverter gate
in the right part of the Figure 4, is similarly partially
defined. The interpreted gates of T satisfy 2 x 3 — phase
protocol.

The circuits generated by ¥ function under 2 x 3 —
phase protocol as follows. There are two opposite modes
of computation. Computation of a circuit C starts with
the input and output states being neutral states \z.4.

Alo|1|D[M|N|BIA

AlA A A |~ [—|—|—|— 1
0A D{D|D|D|— AlA
IABGDDDD— 0|1
D|—|/D|D|D|D|D|D 110
M|—[D|D|D|D|D|D|— D|D
N|—|/D/D{D{D|D|D|— M|N
B|—|(D(D|D|D|D|B|B N|M
Al—l—=|—I—[-]—]|8a B|B

[4: Definitions of a binary gate of X14 and —x14.

The first phase of computation is the samie as in the case
of 5 — phase-protocol. The functioning of the circuit C
under the phases (C >B), (B 1> A) of the protocol result
in the initial neutral state of the opposite mode of the
cbmputation, the input and output states being Az.A.
The functioning of the two modes is identical.

Computation of the circuits under 2 x 3 — phase pro-
tocol us faster than computation of the circuits under
5 — phase protocol, but the gates are bigger

6 Concluding remarks

In this paper we have demonstrated combinational cir-
cuit solutions for the implementation of delay-insensitive
boolean functions. In the proposed computation com-
pletion signaling solutions there are more than one reset
phase per computation phase. In the case of 5 — phase
protocol there are four reset phases per computation
phase and in the case of 2 x 3 — phase protocol there
are 2 reset phases per computation phase. In the case of
2 x 3 — phase protocol, faster computation is achieved
due to the cost of more complex gates. No matter that
the circuits in both solutions are big and the computa-
tion involves more than one reset phase when nothing
‘useful’ is done, these are the minimal solutions so far

obtained.

2L

[1] T.Nanya, M.Kuwako,
“On Signal Transition Causality for Self-Timed Im-
plementation of Boolean Functions”, Workshop on
Asynchronous and Self-timed Circuits and Systems
at HICSS-26, pp. 356-368, January 1993.

[2] M.Kuwako, “Seminar presentation”, Nov.17.1994.

[3] D.Armstrong, A.D.Friedman, P.R.Menon, “Design
of Asynchronous Circuits Assuming Unbounded
Gate Delays”, IEEE Trans. on Computers, Vol. C-
18, No 12, Dec. 1969.

[4] T.Verhoeff, “Delay-insensitive codes - an overview
Cistributed Computing 3:1-8. 1988.

[5] 1.David, R.Ginosar, M.Yoeli, “An Efficient Imple-
mentation of Boolean Functions as Self-Timed Cir-
cuits”, IEEE Trans. on Computers, Vol. 41, No 1,
Jan. 1992.

[6] J.T.Udding, “A Formal Model for Defining and
Classifying Delay-insensitive Circuits and Sys-
tems”. Distributed Computing 1:197-204. 1986.

{7] C.LSeitz, “System Timing”. In: C.AMead,
L.A.Conway, “Introduction to VLSI systems”.
Addison-Wesley, Reading MA, pp 218-262. 1980.

[8] C.E.Molnar, T.Fang, F.U.Rosenberg, “Synthesis of
Delay-insensitive Modules”. Chapel Hill Conference
on VLSI, Chapel Hill, NC, pp 67-86. May 1985.

