FRBET—F72F v 132-12
YATFTAYT T T &

FNL—51iy yxFa 0712

NANT - 2R

AYEa-54 >y BR
(1999. 3. 4)

WHIARY) 2— ALV U 7 BT AENER S
ook Wi B BE |

email:yosuzuki@crl.hitachi.co.jp, m-nagasa@crl.hitachi.co.jp ‘

(%) BILBAERT PRBFZERT

BHRY 2—-A L ¥ ) 7 ERELOLDIC, FLEBETOT - ¥ SHREIC L 2BHAFS
HEfTolke P= 0 HIE L CEEMNICEHEB LUTF— Y OR8Ny Y 2RETHFETEZEL.
B FIETE#E Hitachi SR2201 EICHFIL V¥ Yo F I RF AL LTERELE, BRY I2LV—Vs
yF—- s OTRALICER L, BF2BFIHIHBONDL LB, VA7 A AVS EVa—
WELTEREER, SHBE T TOMEERETRILO) 7V 7 4 ABEERTEEE 2o TV 5,

Static Load Balancing for Parallel Volume Rendering |

Yoshio Suzuki and Mikio Nagasawa
Central Research Laboratory, Hitachi Ltd.

For the parallel volume rendering system, we present a new data-decomposition method for the
optimal static load balancing. In our method, volumetric and pixel data are divided adaptively
according to the data distribution structure itself. We have implemented this adaptive parallel
decomposition algorithm on Hitachi SR2201, MPP system with hypercrossbar interconnection,
using the message-passing libraries. By testing the performance of the new method in volume
visualization of typhoon simulation data, we confirmed the system can obtain a good load balance

with relatively small cost of communication overhead among parallel processors.

1 Introduction

With the development of massive parallel computers,
numerical simulations are being done in three spatial
dimensions with the increase of resolution and com-
plexity. Consequently, the output data size becomes
larger. Because of being difficult to understand such a
raw data intuitively, it is important for scientific visu-
alization to render the whole volume data. The result-
ing image enables us to understand the global nature
of the data and to analyze the simulated phenomena.

In the usual scientific simulations on supercomputers
or MPP, the simulation outputs are reduced and sent
to the post-processing graphic workstations(GWS) for
visualization. The graphic accelerators are applica~
ble for the surface visualization such as a 3-D isosur-
face rendering. When the volume data is too big for
GWS, however, we had better visualize the data con-
currently with the simulation itself on the same MPP.
This is suitable especially for the time-varying data as
in the tracking and steering of simulation. We could
cut the time of volumetric I/O transmission from MPP
to GWS, and speed up the rendering itself by using the
‘parallel processors on MPP..

It is well known that the volume rendering is suit-
able for the direct visualization of volumetric data. At
the same time, it is known as very computationally in-
tensive because of the large number of ray integrations
through the voxels. This indicates the inherent par-

allelism in volume rendering. We investigate several
parallel algorithms in this paper. In the image ‘space
decomposition, we divide the pixel data into some rect-
angle subimages. These pixel blocks are ray-integrated
in parallel. Moreover, we divide also the volumetric
data space in addition to the image space decomposi-
tion. This is due to the following two reasons: First,
the typical 3D simulation data is too large for a sin-
gle processor to posses all the data in its local mem-
ory. Secondly, in the volume rendering, the processing
time is roughly proportional to the data size. There-
fore, also the parallel processing time will be balanced
among processors if we could divide the data evenly.
The latter is our main idea to obtain a good load bal-
ance in parallel volume rendering by dividing the data
at pre-processing steps.

The simple data decomposition method such as a
uniform. voxel slicing, however, is not able to obtain
a good load balance. The data distribution of inter-
est is often concentrated in the simulation of isolated
systems. The dependency on the view direction is not
constant either. Therefore, we propose new data de-
composition methods that divide data according to the
data structure itself and change the decomposition pat-
tern adaptively with the data distribution. By these
adaptive methods, the rendering volume data are di-
vided to realize the uniform load balance among pro-
cessors for every data distribution.



2 Related Work

There have been numerous approaches to speed up the
rendering using parallel algorithm [1, 2, 3, 4, 5, ?].
Many of them were based on the image space decom-
position method, in which sub-images are rendered in
parallel after the allocation of divided scanlines or pixel
blocks. In large applications, the volumetric data is
also divided because of the insufficient local memory
of parallel processors. The simple data decomposition
method were proposed to divide the data space uni-
formly. Without the information of the volume data,
however, such a naive decomposition method needs a
lot of communications between processors, or causes
total load imbalances among processors.

In the effective parallel computing, a good load bal-
ance is so important that many balancing techniques
are proposed. The load balancing methods are classi-
fied into two categories: static load balancing and dy-
namical load balancing. In the fine-grained static load
balancing, the data is divided into very small pieces.
The number of sub-volume is larger than that of par-
allel processors. It is proposed to allocate the sub-
volumes to processors in a cyclic way.

As the dynamical load balancing, Whitman [5] pro-
posed the task adaptive method in image space decom-
position. The processor that has done its task fetches
another task from the processor that has the most task
still unfinished. The decomposition entity could be
much smaller as scanlines in order to get a good load
balance by increasing the number of task tradings be-
tween processors.

3 Parallel Volume Rendering

3.1 Ray integration scheme

The volume rendering [6] is the direct rendering of
scalar field data sampled in three dimensions. There
are two ways of sampling the volume elements or vox-
els. One is the forward mapping in voxel space, and the
other is the backward mapping in image space. The
forward mapping algorithm is a kind of projection that
the individual voxels emit the light to the image screen.
While, the backward mapping algorithm is a kind of
ray-tracing. The rays casted from the image plane go
through the volume data and the opacity sampling are
integrated along the ray axis. Our volume rendering
belongs to the forward mapping algorithm based on
the voxel space sampling with the smooth Gaussian
filters [7].

In the ray integration, the color emissivity and opac-
ity are calculated at each voxel point. The color is
assigned by the Phong’s shading model [8]. Then the
color is accumulated by alpha blending scheme,

Ci-H = ascs+ (1 - as)Ci (1)

where, C; is the accumulated color of pixel, ¢, and
o is the color and the opacity at the sampling point,
respectively.

3.2 Parallel algorithm

We parallelize the volumé rendering by both image
and data space decomposition. As for the image space
decomposition, each sub-image is generated indepen-
dently without communication among parallel proces-
sors during the ray integration.

Our parallel rendering system consists of one host
process and a group of parallel node processes. Each
process is executed at the processor elements of MPP.
The single host processor receives some informations,
such as rendering parameters or viewing angles, from
a front-end computer. Then the host processor sends
the information to the node processors and wait for all
the parallel nodes to finish sub-rendering. Finally, the
host processor receives sub-images from the node pro-
cessors, and reconstructs the complete image to display
with those sub-images. )

In the parallel rendering step, the node processor ac-
tually renders the voxel subspace. Each node processor
does the ray integration to generate the sub-image, and
sends the output sub-image to the host processor. For
the load balancing, each node processor divides and
extracts the data enough for generating the respon-
sible sub-image. We will explain in detail the data
decomposition methods in the next section.

Since the data is divided along z-axis for every sub-
image, we can generate the result image by ray in-
tegration from back to front order according to the
alpha-blending principle.

4 Data Decomposition for Static
Load Balancing

In our volume rendering, the image is generated by
projecting the sampling points in the data space onto
screen. The processing time is roughly proportional to
the data size sustained by each processor. Therefore,
to divide the data space into sub-regions of equal size
would result in a good load balance. There are many

other data decomposition methods proposed [1, 2, 3].

The data space is divided along each axis in such de-
composition methods. Hsu [1] divided the data space
uniformly in each axis, that is, data space is divided
into same-sized region. However if the data doesn’t
distribute uniformly in volume space as often the case,
such decomposition method cannot get a good load
balance.



data space

A image plane A

Figure 1: Decomposition method.(a)uniform decom-

position, (b)rectilinear decomposition, and (c)struct-
ured decomposition.

(b)

y (c)

L =

Figure 2: Structured data-array decomposition.(a)z-
axis partition,(b)y-axis partition,and (c)zaxis parti-
tion.

In numerical simulations, there are many data types,
FEM lattice data, particle data, FDM mesh, etc. Us-
ing the method which has the fixed decomposition pat-
tern for every input data, we cannot expect a good
load balance because the optimal decomposition is dif-
ferent for each simulation data set. The method that
can change the decomposition pattern adaptively for
input data distribution is really needed.

For the performance investigation, we have imple-
mented four decomposition methods in our parallel
rendering system. We define the projection space
“cube” as its z-y plane parallel to the viewing screen
of data-space as in Fig.1. The data is distributed in
this “cube” space. The slicing pattern in the screen
space is same with that of data space along z,y-axis.

4.1 Uniform decomposition

In uniform decomposition, the data space is divided
with equal interval along each axis as in Fig.1(a). Even
if the distribution of data is changed, the pattern of
decomposition remains unchanged in uniform decom-
position.

4.2

It is often true that the data distributes around the
center of screen. Thus, In rectilinear decomposition as
in Fig.1(b), the data space is divided with smaller spac-
ing around the center of screen. But using rectilinear
decomposition, we cannot get good enough load bal-
ance for some kind of simulation with periodic bound-
ary conditions. That has a complex data distribution
as is often the case of homogeneous 3-D turbulence.

Rectilinear decomposition

4.3 Structured decomposition

In uniform decomposition and rectilinear decomposi-
tion, the pattern of decomposition is fixed for every
data distribution. Then we cannot obtain good load
balance for the changing distribution because the di-
vided data-size is not equal among processors.

Our goal is to divide data equally in number by
changing the pattern of decomposition adaptively for
every data. In uniform decomposition and rectilin-
ear decomposition, the data space is divided with the
projection space “cube”, but the data is sliced with
data-distribution structure itself in the structured de-
composition as in Fig.1(c).

The sampling points have coordinates(z,y,z) and
other simulation quantity. These are represented as
an array of 3D-position coordinate. The data can be
divided equally in number by dividing the data array
evenly. However, spatial relation may be disrupted
by such a decomposition because adjacent sampling
points in data space may not always be stored adja-
cently in data array. The sampling points, located in
neighborhood in data space, happen to be divided into
different sub-arrays. In the ray integrations, the neigh-
bor sampling points in data space will contribute the
same or adjacent pixels. When such data is separated
into different processors, each processor must commu-
nicate to get the other information afterward.

In the structured decomposition, we do sort the sam-
pling points first. By this sorting, the order in array
is made to be same with the order of data-value such
as an order along z-axis in data space. Then, by di-
viding the data array evenly, we can divide the data
into same sized sub-arrays without disrupting spatial
relations in data space. We accelerate sorting by using
“gsort” function.

In Fig.2, we depict structured decomposition. First,
the data array is divided into n, sub-arrays after be-
ing sorted along z-axis. Then each sub-array is divided
into n, sub-regions after being sorted along ¢-axis. Fi-
nally the data array is divided along zaxis in the same
way. '

The structured decomposition makes possible to di-
vide the data into equally sized sub-set by dividing
the sampling points according to the data distribution



structure itself. As a result of sorting, the data is di-
vided without disrupting spatial relations both in the
data space and in the distributed memory space of

MPP.

4.4 Hybrid decomposition

The sorting requires intensive computational cost.
In fact, the computational cost of sorting reaches
O(NlogN) in the worst case where N is the total
number of sampling points. The first sorting step in
structured decomposition is as heavy as O(NlogN),
although the cost of second and third sorting after
decomposition along z,y-axis reaches O(%log%) and
O( ni\; ylognﬁL y) respectively. Thus we could replace
the first sorting step of structured decomposition with
rectilinear decomposition as a hybrid decomposition
approach. If the data is distributed locally around
the center of data space, hybrid decomposition enables
data slicing faster than structured decomposition, and
therefore the better load balance than that of recti-
linear decomposition is achieved. If the data has the
characteristic distribution of homogeneous dispersion
in space, the first step of rectilinear slicing of hybrid
decomposition cannot achieve good load balance. Be-
cause of the inefficiency of the first step of rectilinear
decomposition, the data may not be divided uniformly
among processors in hybrid decomposition.

In each decomposition method, each processor pos-
sesses not only the data in its responsible pixel region
but also the data in adjacent pixel region because the
data in adjacent pixel region could contribute to render
the sub-image as well. By this overlapping configura-
tion, the additional communication could be greatly
reduced between processors.

5 Results

We have implemented our parallel volume rendering
algorithm to our MPP(Hitachi SR2201) system with
the hypercrossbar interconnection of 64 processor ele-
ments. We used PARALLELWARE(EXPRESS) [9] for
the communication between processors. We developed
our system as AVS [10] modules for the cooperation
with the simulation solver modules. On this software
platform of AVS, concurrent execution of simulation
and visualization are realized in the open system with
MPP and GWS. And the system is developing to be
capable of a real-time tracking and steering of large
scale simulation.

We visualized typhoon simulation data as a test of
our parallel volume rendering system. The data size
of simulation is 135 X 111 X 14 and the pixel resolution
is 592 x 444.

FOOOQ [-ne == -mmsms e mmmm o= e s s s

60000

| BPE0 OPE!
i @PE2 MPE3
[ OPE4 OPES
| MPE6 EPE7)

50000

ize

40000

30000

data s

20000

10000

structured

rectlinear

uniform hybrid

Figure 3: Memory load balance in number of sampling
points among processor elements(PE).

5.1 Memory balance

In Fig.3, we compare the allocated data size of
each node processor, for each decomposition method:
“uniform” decomposition, “rectilinear” decomposi-
tion, “structured” decomposition, and “hybrid” de-
composition with eight node processors. The rendering
process consists of a host process and eight node pro-
cesses. There is large imbalance in “uniform” decom-
position and “rectilinear” decomposition. Some nede
processors have extremely large amount of data and
others have little data in these decomposition methods.
On the other hand, the data is divided uniformly in
“structured” decomposition and “hybrid” decomposi-
tion. Since the data is distributed around the center of
image in this test data, better load balance is achieved
by using “rectilinear” decomposition than “uniform”
decomposition, and we find that there is little imbal-
ance in “hybrid” decomposition.

5.2 Power balance

In Fig.4, we compare the measured processing time
of each node processor using “uniform” decomposi-
tion, “rectilinear” decomposition, “structured” decom-
position, and “hybrid” decomposition with eight node
processors. The rendering process consists of a host
process and eight node processes. There is imbalance
in “uniform” decomposition and “rectilinear” decom-
position. Some node processors that have little data
can generate sub-image faster, but other node proces-
sors that have much data need larger processing time.
On the other hand, good load balance is achieved in
“structured” decomposition and “hybrid” decomposi-
tion. The processing time of each node processors is
almost equal. Considering both the data size after de-
composition and the processing time of each nodes, we



confirmed that “structured” and “hybrid” decomposi-
tion are suitable for good load balance.

5.3 Scala‘bility

In Fig.5, we compare the speedup in parallel rendering
of “uniform” decomposition, “rectilinear” decomposi-
tion, “structured” decomposition and “hybrid” decom-
position. We tested the speedup for the case of 3 to
41 processors.. As a result, we find little difference
due to the variety of decomposition in a few processor
cases. This is because the decomposition patterns are
almost same with few processors. While in the case of
large parallelism, “uniform” and “rectilinear” decom-
position’s performance is in decline, because the large
difference between the optimal decomposition pattern
and their fixed decomposition. A good performance
is achieved in “hybrid” decomposition in large paral-
lelism with many processors. Because we can short-
cut the time-consuming sorting step calculation by
“rectilinear” decomposition, the processing time of de-
composition in “hybrid” decomposition is greatly im-
proved. In the parallel rendering of hybrid decompo-
sition with 41 processors, the processing time is 8.81
sec, that is, 21.5 times speedup is achieved.

5.4 Pattern of decomposition

-We compare also the actual pattern of decomposition
from different view direction using hybrid decompo-
sition ‘method in Fig.6,6. Because the data distribu-
tion is changed according to the view direction, the
good load balance cannot be achieved by the method
that has the fixed decomposition pattern as “uniform”
and “rectilinear” decomposition.

In “hybrid” decomposition the area of sub-region is
not equally sliced as in Figs.6,6 because the data is di-
vided according to the.data distribution structure it-
self. After changing the view direction, decomposition
pattern and area of each sub-image is also changed
adaptively so as that the data size becomes equal

among parallel processors. In “hybrid” decomposition,

the data is divide by rectilinear slicing at first step of
decomposition. Thus the slicing pattern of “rectilin-
ear” and “hybrid”decomposition along x-axis is equal.
Similarly, because the decomposition algorithm after
rectilinear slicing is same with “structured” decompo-
sition, the slicing pattern along y-axis is similar to that
of “structured” decomposition.

6 Conclusion and Future Work

We developed a parallel volume rendering system for
massively parallel processors. In our algorithm, the

time(sec)

rectilinear
0 PE1 PE2
unifoﬁﬁ

Figure 4: Load balance abong processor elements(PE)
in processing time. The processing time of each process

is plotted for each decomposition method. )
45 T T T T T T T T

40 uniform decomposition -o-

rectlinear decomposition ——
structured decomposition &
35 hybrid decomposition -~

30 - h

T
g 5 g
g
= 20 /‘x”‘)-
L
— ‘6"‘
15 + =T R
o A
10 - P e i
e
& e
5 2L B

0 ! ! L L ! 1 1 L

0 5 10 15 2 25 30 3 40
Processors

Figure 5: Speedup effect in parallel volume rendering.
Saturation points is highest in “hybrid” decomposi-
tion.

image-space is divided for parallelization and the vol-
umetric data is also divided for load balancing. By
slicing the data adaptively in pre-processing step, we
realize optimal static load balancing for parallel vol-
ume rendering,.

We investigated several decomposition methods for
static load balancing. In “rectilinear” decomposition,
the data space is divided with smaller spacing around
the center of screen. In “structured” decomposition,
the data array is divided according to the data struc-
ture itself not to the projection space. By changing the
decomposition pattern adaptively, the data is always
divided uniformly for every case from any view direc-
tion in “structured” decomposition. When the first
step of sorting in “structured decomposition” happens



Figure 6: Hybrid slicing patterns with different view angles.

to be computationally intensive, we can improve its
performance by replacing the sorting step with recti-
linear slicing in “hybrid” decomposition.

We have implemented our system on Hitachi
SR2201, MPP system with hypercrossbar interconnec-
tion, using the message passing libraries. By testing
the performance in volume visualization of typhoon
simulation data, we confirmed that our data decompo-
sition method is effective for parallel volume rendering.
We achieved about 21.5 times speedup using 41 pro-
cessors. We developed our system as AVS-module in
conjunction with CFD simulation solver for the con-
current execution of simulation and visualization.

Our goal is the real-time tracking and steering of sci-
entific simulation. Thus we need further speed up of
rendering. For this goal, we are going to refine our al-
gorithm and to implement on the new more powerful
Technical server(Hitachi SR8000) which has pseudo-
vector processors connected with 3D hyper-crossbar
network and has “co-operative micro-processors in sin-
gle address space” feature.

Acknowledgment

The research results were achieved on the joint re-
search of CRIEPI(Central Research Institute of Elec-
tric Power Industry) and Hitachi Ltd. The ex-
periments were performed using Hitachi SR2201 at
CRIEPI. The data set of typhoon simulation was pro-
vided courtesy of H. Hirakuchi and J. Tsutsui at
CRIEPI and A. Kasahara at NCAR.

References

[1] W.M.Hsu.“Segmented Ray Casting for Data Par-
allel Volume Rendering”, Proc. of Parallel Ren-
dering Symposium, pp7-14, 1993.

[2] K.-L.Ma, J.S.Painter, C.D.Hansen, M.F.Krogh,
“Parallel Volume Rendering Using Binary-Swap
Compositing”, IEEE CG&A Vol.14, No.4, pp59-
68, 1994.

[3] U.Neuman, “Parallel Volume-Rendering Algo-
rithm  Performance on Mesh-Connected Multi-
computers”, Proc. of Parallel Rendering Sympo-
sium, pp.97-104, 1993.

4

B.Corrie, P.Mackerras, “Parallel Volume Render-
ing and Data Coherence”, Proc. of Parallel Ren-
dering Symposium, pp23-26, 1993. :

[5] S.Whitman:“Dynamic Load Balancing for Par-
allel Polygon Rendering”, IEEE CG&A Vol.14,
No.4, pp41-48, 1994.

[6]. Mark Levoy.“Display of surface from Volume
Data”, IEEE CG & A, Vol.8 No.5, pp.29-37,1988, -

[7] M.Nagasawa, K.Kuwahara,“Scientific Visualiza-
tion of Physical Phenomena”, (ed. N.M.Patri-
Ikalkis,Springer-Verlag Tokyo) ,pp589-605, 1991.

(8] B.T.Phong,“Illumination for computer generated
images”,C.ACM,vol.13,No.6,pp.311-317,1975.

[9] Hitachi Ltd.,“PARALLELWARE-C-USER’S GU-
IDE”, Hitachi Ltd., 1995. '

[10] Advanced Visual System Inc.,“AVS USER’S
GUIDE”, Release 5, Advanced Visual System
Inc.,1993. - ‘



