HEMT—FTIF v
(1999. 8. 3)

Router Design and Kernel System of a Compact Parallel Graphics Accelerator

Tran Cong So and Katsuhiro Yamazaki
Department of Computer Science
Ritsumeikan University

Abstract: The Volume Visualization Accelerator (VoViAc) system is a compact paralle] system with a
3D torus interconnection network designed for volume graphics visualization. With the development proc- -
ess, we have designed and implemented a Router and a parallel Kernel system for the VoViAc. This paper
describes the Router and Kernel system in the aspects of designing and implementing them for a very com-
pact parallel system. Primary results of the Router and Kernel system will be presented.

"1 Introduction

Recently, performance of PCs and workstations is
much more powered, but for volume graphics visu-
alizations, especially in interactive real-time appli-
cation, these powers are still not sufficient. Re-
search on volume graphics acceleration still attracts
many researchers to invest their work to find out
other better ways for volume visualization, both in
speed and cost-performance factor.

A number of previous special purpose hardware
approaches can be found in the literature such as the
CUBE4 [1], VIRIM[2], and the ReVoler/C40 [3].
The key issue of CUBE-4 is the skewed memory
organization for beam parallelism. The hardware of
VIRIM consists of several modules, each composed
of a geometric unit for volume rotation, re-
sampling, and gradient computation and a ray-
casting unit for the final image generation. The Re-
volver/C40 uses pipelining of stages in volume ren-
dering. In each stage, an array of processors proc-
esses data in parallel.

. The Volume Visualization Accelerator (VoViAc)

system has been developing since 1995 for volume
graphics speed-up purpose [4]. The VoViAc ar-
_chitecture bases on the 3D-torus. topology that is
scalable. The main feature of the VoViAc is to pro-
cess light ray in pipelining fashion. Figure 1 shows
a prototype of the VoViAc with 8 processing ele-
ments connecting with a Host computer and a 2D-
memory array. The VoViAc receives volume data
set from the Host; processes it with ray casting or
3DDDA-algorithm and outputs image to display’s
memory or sends it back to the Host for other uses.

Figure 2 illustrates a processing element (PE),
which consists of a processor, local memory and a
Router. PEs use DSP (digital signal processor) for
high speed in mathematical (image) processing. PEs
communicate with each other by the Router over an
interconnection network. The Router is designed to

The VoViAc

2D Memory

3 = Proceessing Element

Interconnection Network
Peripheral connections

Figure 1 System architecture

implement on FPGA (Field Programmable Gate
Array) to reduce the development time. The local
memory has 512 Kbytes of SRAM. PE’s boards
have additional circuits supporting for FPGA pro-
gramming, clocking, etc. }

The development process of the. VoViAc is di-
vided into many parts [5]. At first, we designed the
system architecture, built printed circuit boards and
assembled components together. Then, we con-
structed the Router design, implemented Kernel
system and support software. In the constrains of
implementing a compact parallel system, the Router ‘

DSP | MEMORY

Figure 2 Processing element structure

—133—

134—23

and the Kernel system need to be compact to be fit
into the system. So that, the Router and Kernel
system must be implemented as small and as fast as
possible and guarantee for reliable operations.
Therefore, the Router was designed in traditional
way with a schematic editor (Mentor Graphics EDA
tools) to achieve hand-tuning optimized circuit. The
Router’s layout in FPGA was full floor-planned to
carry out the best timing solution. The Kernel sys-
tem was coded in an assembly language, it could be
fitted in a small portion of system memory and ac-
quired the fastest speed. In the following sections,
we would like to describe the implementations and
performance evaluations of the Router and the Ker-
nel system.

2 The Router

The VoViAc is a distributed memory parallel
system, hence, PEs use messages to communicate
with the others in the system. To route messages
over the interconnection network, we implement a
device called Router in each PE. When a thread
(process) sends a message, the Kernel packetizes it
into packet(s) and then sends packet(s) to the
Router. The Router then automatically routes pack-
ets to the destination, where received packets are
reassembled back into original message.

2.1 Network Topology

The VoViAc’s intercommunication network (IN)
is a 3D torus as shown in Figure 3. PEs are con-
nected to six neighbors, called north, south, east,
west, up, and down. PEs on the edge of the mesh
are connected to PEs on the opposite edge, creating
the torus structure. Routers show up as valves at the
junctions of connections to control the flow of
packets in the interconnection network. In each di-
mensjon, the Router has an input port and an output
port connecting to the previous and next nodes. A
pair of injection and extraction channel conjoins the
Router to local DSP.

Figure 3 Network topology

2,2 Wormhole Routing

There are various types of switching technique
used in interconnection networks such as circuit
switching, packet switching, virtual Cut-through,
wormhole, mad post-man switching [7]. We have
chosen the wormhole routing to be implemented in
the VoViAc, due to the wormhole technique does
not require buffering complete packets in interme-
diate node(s), so that, allows us to construct smaller
and faster Router. In wormhole routing, message
packets are broken up into flits (a byte in the Vo-
ViAc) to pipeline throughout the network. Several
first flits contain routing information and form
packet header; the ‘others contain packet data. When
a packet reaches a Router, its header is examined
and then the Router forwards the header to required
output port as soon as the routing decision is made
without waiting for the whole packet to be received
into the Router. As a result, succeeding flits of the
packet just simply follow preceding flits along the
same channel. At the same time, a channel from the
input port to the output port in the Router is occu-
pied until the whole packet has passed over the
Router.

2.3 Flow Control and Routing Algorithm

Flow control policy is how to control network
traffic flow without causing congestion or deadlock.
The wormhole routing uses blocking policy incases
of packet collision. When the first packet occupied
the requisite output channel, the second packet is
being blocked from advancing. When the output
channel is free from the first packet, the second
packet is then locating the channel and advancing.
The blocking flow control is easy to be imple-
mented but this may cause deadlock if we do not
have a suitable routing algorithm.

In parallel system, the message priority is impor-
tant. When two packets require the same channel at
the same time, a packet with higher priority will
allocate to the channel. Thus, a message with higher
priority will be routed faster incase of high traffic
appears in the IN. This supports for multi-level pri-
ority task. For instance, kernel-to-kernel communi-
cation should have higher priority than application-
to-application communication. ’

Routing algorithm deterministically or adaptively
computes routing path to guide a packet to reach
destination. In the VoViAc’s Router, a determinis-
tic modified E-Cube routing algorithm, which based
on dimension-ordering routing, is used to archive
the compactness and. fastness of the Router. The
modified E-Cube routing is applied for 3D-mesh,
3D-torus topologies. This algorithm is described as
follows:

—134—

The next node address a{x,, ¥, Z,} of a 3D-torus
is calculated from the present node address p{xp, ¥p
z,} and the destination node address d{xq, yq, Za} as
follows:

afXw Yoo Zaf = Pl%p+i, Ypti, 2ptk}
With
i=1if (%, @ %42 0)
j=lif (yp®@ yq#0 and j=0)
k=1if (2@ z3#0 and j=0 and k=0)
i, j, k=(0,1) and a, p, d are binary coded ad-
dresses :

In this algorithm, a packet always routes in X di-
mension first, then Y dimension, and lastly Z di-
mension. When the packet reaches the same level of
destination address in a dimension, it detours to the
next dimension until it reaches the destination. This
algorithm eliminates deadlock or live-lock situa-
tion.

However, this dimension ordering routing do not
offer minimal routes for the torus, but somehow,
this deadlock-free routing, which lets packets trav-
erse through longer path, sometimes can reduce
network traffic for other reasons.

2.4 Broadcasting and Multicasting

A broadcast pattern is the case of one-to-all com-
munication while the multicast pattern corresponds
to one-to-many communication. So, in some respect
we can consider broadcast as a special case of uni-
cast communication. The multiple destinations are
encoded and appended to the packet header. Such
multicast packet is called multi-destination packet.
To perform better traffic and distance-cost of multi-
cast, the tree-base multicast algorithm [7] is used.
Packet routing still follows the routing algorithm
described in the above section.

2.5 Message and Packet Format

Messages carry information between PEs. For
processing and routing purpose, a message is cre-
ated with the following structure (Figure 4):

6 242 8
[Message ID[T] S|P| DestAddr | Task | Data |

Figure 4 Message format

Message ID is used to identify the message. T
field is the routing Type of the massage. S field is
the binary address of the sender node. Destination
address field contains 8 bits corresponding to the
addresses of destination node(s). P field is the Pri-
ority of the message. Task field contains the task
that destination node(s) must process. Data field is

the data for the task. The message has minimum
length at one packet.
2.4 2 8

7] s |P| Dest Adar

8
PSN | Packet Data |

Figure 5 Packet format

Messages are packaged into packet(s) to transmit
over the interconnection network (IN) through
Routers. Messages are later reassembled from
packets at the destination node. Packet format is
shown in Figure 5. Packets have fixed length at 31
bytes. The 1% and 2™ bytes are header of a packet
that contains T, S, P and destination address pa-
rameters. The header guides the packet to reach the
destination. The 3™ byte is always Packet Serial
Number (PSN). PSN is used to reassemble packets
to form original messages in case the messages re-
quired more than one packet to form. The bytes
from 4™ to 31% are data of the packet.

2.6 Router Structure

Crossbar Switch

Interface with DSP

Figure 6 Router structure

Figure 6 illustrates the Router structure. The main
part of this Router is a Crossbar switch, which con-
nects inputs to outputs to perform packet routing.
The Crossbar switch can tie up an input to one or
many outputs at a time. The one-to-one connecting
performs unicast communication while the one-to-
many connecting does multicast communication.
The Input buffer controls the link with previous
Router and does the destination address decoding.
The Crossbar switch controller ‘governs crossbar
switch states, does scheduling for channel request;
and manipulates the output buffer to change
packet’s header incase of multicast and broadcast.
The P-input and P-output buffers are the corre-

—135—

sponding injection and extraction channels for the
local DSP. The Interface with DSP circuitry pro-
vides DSP control over the Router.

When a packet reaches an input buffer, its header
is firstly latched. Routing information, such as des-
‘tination, priority and routing type are then decoded
to carry out a routing decision. After that, a crossbar
channel request asks the Crossbar controller to pro-
vide. -arouting channel. The Crossbar controller then
queues up the request in a FIFO buffer. When the
request is in its order to be solved, Crossbar switch
controller manipulates the Crossbar to connect the
input to the corresponding output and establishes
the requested channel. If the packet is a multi-
destination packet, the header of the output packet
will be changed appropriately with output dimen-
sion. When the whole packet has passed over, the
input buffer de-asserts its channel request; there-
fore, the Crossbar switch controller orders the
crossbar switch to disconnect the channel. The
Router finishes a routing cycle.

The Router can do many routing decisions con-
currently. For example, maximal four unicast com-
munications (X -> Y, Z > X, Y-> P, P -> Z) can
occur at the same time.

2.7 Router Implementation

The Router was designed with Mentor Graphics
tools. The design was based on schematic (Idea
Station) to allow hand-tuning optimization of per-
formance and size. After simulated in functionality
wiht QuickSim, the design was re-targeted into
Xilinx netlist and then done place and routing by
Xilinx tools (Xmake). With the back-annotation
delay information, we did timing simulation before
debug in the real FPGA chip. The design has been
entirely floor-planned to be able to fit into FPGA
and also optimize timing specifications.

Table 1 Estimate of device utilization (4010DPQ160)

Function Quantity Utilization (%)

1/O pins - 91 71

CLB FG function 555 ' 69

generators

CLB: H function 93 23
_generators

CLB flip-flops 340 43

Bus resources 47 59

3 Kernel system

3.1 Kerne) Structure :

The VoViAc’s Kernel is like a pseudo operating
system for each node. The Kernel structure is

shown in Figure 7. The Kernel must be enough
functionality to allow the VoViAc to communicate
with the host comptiter but be small enough to fit
into tiny EEPROM. Also the Kemel has to supply
most basic device drivers and interrupts for appli-
cations running on the Kernel. At start up, the Ker-
nel is the software, which the VoViAc run to check
itself and to communicate with the host computer.
Therefore, a part of the Kernel must be contained in
EEPROM. The other part of the Kernel will load
from the host computer

Kernel System

Command
Interpreter

i 1
*

' Application %

Router

Figure 7 Kernel structure

The Kermnel is system software, which supports for

the following responsibilities:

- Setup the system hardware at power start-up.

- Communication program with the Host com-
puter to load the other part of the Kernel.

- Communication program with other nodes to
check the overall system or to complete the
Kermnel.

- Supply the most basic functions, interrupts and
hardware device drivers of the system for appli-
cation that isolate the applications from system
hardware and from system software.

3.2 Setup Procedures

At power-on, the start-up procedures are executed
to setup the VoViAc. The start-up process includes
several specific procedures:

- Node setup procedure configures the hardware
of each node, checks hardware functionality.

- System setup procedure checks the IN statuses
in all nodes to create overall status variables.

- Kernel loading procedure loads the other part of
Kernel from the Host. It also completes environ-
ment variables such as interrupt table and software
environment statuses. At last, this procedure loads
the command interpreter to the VoViAc.

—136—

3.3 Hardware device drivers

Hardware device drivers are used to control the
hardware. The following device drivers are pro-
vided:

- Router device driver (RDD): This driver exists
in all nodes and supports for interfacing with the
Router.. An application interacts with Router device
driver though the AMI to send-and receive mes-
sages over the IN and moreover do synchronization
between processes.

In sending, an application sends a- message re-
quest to the RDD. The RDD creates the message
structure and_ sends the message to the bottom of
outgoing queue. Meanwhile, the RDD packages the
top message into packet(s) and orderly sends pack-
ets to the Router. The Router then sends packet(s)
over the IN to the destination. In receiving, the
Router receives packets and sends them to the
RDD. The RDD reassembles the original message
from packets with information in the header and the
PSN and then puts it to the bottom. of incoming
queue. Meanwhile, the RDD processes the top-level
message and creates an event to the application.

The RDD supports for blocking (synchronous)
and non-blocking (asynchronous) message send and
receive. In blocking mode, the RDD waits for the
completion of sending or receiving then returns
control to the calling process. On the contrary, in
non-blocking mode, the RDD returns control to the
calling process before the actual sending or/and
receiving has been completed.

The RDD supports for point-to-point and collec-
tive communication between nodes. Point-to-point
communication does communicate between a pair
of nodes while collective communication takes
place among all nodes. Also, the RDD has ability to
do barrier synchronization among processes.

- Host communication device driver: Only the
root node has to use this driver to communicate
with the host computer. This driver supports the
command interpreter program in VoViAc to com-
municate with the Monitor program in the Host to
provide application loading, debugging, testing and
benchmarking. Also, this driver supplies a simple
file system for applications while co-operate with
the Monitor.

3.4 Application Message Interface

The principal role of the Kernel is to provide mes-
sage-passing interface for applications that run on
the VoViAc. Application Message Interface (AMI)
supplies function calls for application to send, re-
ceive, inquire messages, and to do barrier synchro-
nization among nodes. At this time, we have im-
plemented some of the most basic functions for the

AMI. The functions are called through a software
interrupt. The following is the brief description of
the completed functions.

Blocking Send. A blocking send requires the
Kernel to complete the transfer before returning to
application. Input parameters include address of
data location to be sent, length of data, destination
address, ID of message to be sent and routing type.

Unblocking Send. An unblockmg send does not
require the Kernel to confirm that the message has
been sent. So that, after the function is called, we
can not assure that the data that was sent is avail-
able to be changed or not. To confirm that, we uses
the un-blocking send test function.

Blocking receive. This function scans the input
message buffer repeatedly to find out a required
message. Inputs are physical address of the receive
buffer, data length, ID of the message to be re-
ceived and source node address of the message.

Unblocking receive. The function scans input
message buffer for only once. It returns the data to
the application if message is found. '

Barrier synchronization. This function provides
synchronization for processes of application that are
running on PEs. When called, this function sends a
special message to all nodes and then waits for re-
ply. Once the replies from all nodes have been re-
ceived, the function returns to the application.

Unblocking send test. After sending a message
by an un-blocking send function, we do not know
whether the data was already sent or not. Hence,
this function provides a method to check it out. The
function checks the message ID in the output mes-
sage buffer. If the message has not been sent, then
the ‘message ID should appear in the buffer. The
function returns code to indicate the status of the
sending.

In the AMI, user decides whether a unicast or a
multicast is done when programming application by
putting the destinations address in destination field
before calling send function.

3.5 The Monitor and Command Interpreter

* The Monitor’s programs running on the Host
computer provide manipulation of VoViAc’s op-
erations. At. startup, Monitor’s loading program
loads Command Interpreter to the VoViAc. And
while co-operating with the. Command Interpreter,
the Monitor loads, executes and debugs parallel
programs on the VoViAc. Thus, the Monitor. and
the Command Interpreter must be coupled: tlghtly in
operations.

The Monitor supports mainly for debuggmg ap-
plication. The Monitor allows users to view and
change contents of registers, memory locations in

—137—

all PEs. Users:also can run the application in step-
by-step or with breakpoint fashion.

4 Results

The VoViAc system is now executable. At the
very first step, a very simple program that calcu-
lates the summation of a data array in parallel run-
ning on 8 nodes has returned a correct result. In this
sample program, the Host sends the same program
to all nodes and each node calculates its own sum-
mation. Then, the node O (root node) collects tem-
porary data from other nodes; computes the final
result and finally send it to the Host.

For the Router and Kernel system evaluation, we
have measured traverse time of message passing in
the VoViAc. In the first experiment, we measure
the ping response time (send a request message and
wait for a response message) from node O to other
nodes. The result shows that the ping response
times almost do not change with network distances
(from 1 to 3) between node 0 and other nodes with
range of traverse times varies from 9765 to 9788
clock cycles. So, we can ensure that the overhead
cost is mostly caused by message processing soft-
ware (Kernel) for various data copying, packetiz-
ing, packet reassembling, buffers management, etc.
This affirms that the latency of wormhole routing is
not much changed by the network distance.

1000000 -

448
1235 1077 770

100 - 611 598 560 538

Latency (cycles)
2
(=3
S

Message length (words)
1 2 4 8 16 32 64 128 256
—4o— Message Latency —ll— Latency per word

Figure 8 Message length and average latency

In Figure 8, the relation between message length
and average latency of unicasting is shown. The
message latency is .increased approximately with
message’s length, while latency cost per word is
reduced. This can be explained by the cost of mes-
sage creation and packetization. With large mes-
sage, the latency cost is still high with the cost of
data transfer, buffers management, and packetiza-
tion and wait-states in the interaction bctween DSP
and the Router.

5 Conclusions

This paper has described the implementation and
evaluation of the Router and Kernel system for the
VoViAc mainly in message passing mechanism, the
Router design, and Kernel software supporting for
message handle and system start-up. Some simple
test procedures and measures have -been done to
show that the VoViAc system is now executable
and ready for further development.

The VoViAc’ Router and Kernel needs to be im-
proved with more functions to be completed. In
near future, multi-cast and broadcast routing will be
examined and Kernel will be optimized to limit the
high-cost of message routing. The Monitor’s debug
functions need to be developed as well. Some other
test programs should be implemented on the Vo-
ViAc to evaluate the VoViAc in more details such
as sorting, encoding, mandelbrot, etc., before
heading forward for volume graphics visualization.

Acknowledgement

We would like to thank Mentor Graphics Japan Co.,
Ltd. for providing us CAD tools in the higher edu-
cation program.

References:

[11 AXKaufman and R.Bakalash, “Memory and
Processing Architecture for 3D Voxel-base
Imagery,” IEEE Computer Graphics and Ap-
plications, Vol.8, No.6, pp.10-23, 1988.

[2] T.Gunther, at al, “VIRIM: A Massive Parallel

~ Processor for Realtime Volume Visualization
in Medicine,” Proceeding ot EuroGraphics
Workshop on Graphics Hardware, Volume
EG94HW, EuroGraphics Technical Report Se-
ries, pp. 103-108, 1994.

B1 BE, fs, “KUya—ALr¥yIrvr8
FI 3 5UEHE#E — ReVolver/C40, ” S5IMLER
¥ VRV KISPP'OSER &, pp.11 - 18,
1995.

[41 g, L, “KY 2 —ATHRICET 7 &

7V — ¥ OWBE, 7 BRREZEKESE
4K, 4S-11, Vol.2, pp.337-338, 1995.

[5] T.C.So, K.Nakajima, and K.Yamazaki, “The
message routing mechanism and kernel system
‘of a parallel graphics accelerator,” Proc. 56
IPSJ'98 Record, 1N-05, pp. 105-106, 1998.

[6] Kai Hwang, “Advanced Computer Architec~
ture: Parallelism, Scalability, Programmabil-
ity,” McGraw-Hill, 1993.

[71 J.Duato, S.Yalamanchili, and L.Ni, “Intercon-
nection networks: An engineering approach,”
IEEE Computer Society Press, 1997.

—138—

