
1

Dynamic Thread Extension for

Speculative Multithreading Architectures

Niko Demus Barli,† Daisuke Tashiro,†† Shuichi Sakai†

and Hidehiko Tanaka†

To reduce the effect of thread overheads when executing small threads in speculative mul-
tithreading architectures, we propose a mechanism called Dynamic Thread Extension. This
mechanism allows the hardware to dynamically combine two or more consecutive threads and
treat them as a single thread. By having the compiler to estimate the size of threads, this
mechanism can be implemented with minimal hardware support. Simulation results show
that more an average of 13% performance improvement can be achieved.

1. Introduction

Speculative Multithreading has been em-
ployed in a number of microprocessor archi-
tectures to accelerate the execution of single
threaded applications [1–7]. These architectures
partition a single threaded program into threads
either statically or dynamically. These threads
are not necessarily independent, but may in-
clude some sort of control or data dependen-
cies. It has been shown that considerable per-
formance improvement can be achieved by exe-
cuting these threads speculatively.

There are many challenges in designing a well-
balanced speculative multithreading architec-
ture. This paper is intended to deal with one
of the design problems: how to reduce the ef-
fect of thread overheads in speculative multi-
threaded execution. We first verify the fact that
there are many small threads created during a
speculative multithreaded execution, thus intro-
ducing large overhead effect. It will be shown
that the performance degradation due to this
overhead effect may not be easily solved using
software approaches alone. Consequently, we
choose to combine both hardware and software
approaches and propose an effective mechanism
called Dynamic Thread Extension.

Dynamic Thread Extension dynamically com-
bines two or more statically defined threads to
form a larger thread, thus reducing the num-
ber of small threads executed. Compiler is re-
sponsible to estimate the size of these threads.
This information is used by the hardware to de-
cide whether it should extend the execution of a
thread or not. By shifting some functionalities

† Graduate School of Information Science and Tech-
nology, The University of Tokyo

†† Graduate School of Engineering, The University of
Tokyo

to the compiler, we show that Dynamic Thread
Extension mechanism can be implemented with
simple hardware while still achieving its purpose
to reduce the effect of thread overheads.

The rest of this paper is organized as follows.
Section 2 describes the baseline architecture and
thread partitioning method used in this work.
Section 3 investigates the effect of thread over-
heads and discusses a number of alternatives to
reduce this effect. Section 4 describes the idea
and implementation of Dynamic Thread Exten-
sion. Section 5 shows the evaluation results. Fi-
nally, section 6 concludes this paper.

2. Methodology

2.1 Baseline Architecture

PU 0 PU 1 PU 2 PU 3

Reg Reg Reg Reg

Spec
Buf

Spec
Buf

Spec
Buf

Spec
Buf

Thread Control Unit

Memory

Fig. 1 Baseline Architecture

For the rest of this paper, we assume a base-
line processor shown in figure 1. The proces-
sor is a Chip Multiprocessor (CMP), consisting
of a thread control unit, four processing units,
and a memory system. Thread control unit
is responsible for resolving inter-thread control
dependencies and scheduling threads into PUs.
We assume a perfect next-thread prediction, i.e.
the thread control unit always predicts succes-
sor threads correctly.

研究会Temp

研究会Temp

研究会Temp
計算機アーキテクチャ

研究会Temp
144－23

研究会Temp
（２００１． ７． ２７）

研究会Temp

研究会Temp

研究会Temp
－129－

2

Table 1 Baseline Architecture Parameters

No. of PUs 4 Processing Units
PU 6-stage out-of-order superscalar
parameters 4 functional units

2 load/store units
4-instruction fetch width
64-entry instruction window
32-entry speculative buffer

Inst. Latency 2 cycles for Load/Store
1 cycle for other instruction

Delays 1 cycle thread start/stop ovh.
1 cycle communication delay
1 cycle restart ovh

Idealized Perfect memory
conditions Perfect next thread prediction

Each processing unit (PU) in this architec-
ture is a 6-stage out-of-order superscalar core.
Two-cycle execution latency is assumed for
Load/Store instructions, whereas one-cycle ex-
ecution latency is assumed for all other instruc-
tions. Table 1 summarizes the other parameters
used in our baseline architecture.

To support speculative multithreaded execu-
tion, a register communication mechanism is
assumed. Compiler statically analyzes a pro-
gram for inter-thread register dependencies and
inserts communication primitives into the pro-
gram. Load instructions are speculatively exe-
cuted. A mechanism to detect memory depen-
dency violation is assumed. In case a violation
occurs, the violating threads are squashed and
restarted. Finally, each PU has a 32-entry spec-
ulative buffer to temporarily hold data specula-
tively written to memory.

2.2 Thread Partitioning Method

A program is statically analyzed and parti-
tioned into threads. We define thread as a con-
nected subgraph of a control flow graph with
exactly one entry point. Overlapped regions
shared by two or more threads may not ex-
ist. A thread partitioning algorithm proposed
in [12] is used to put thread boundaries in func-
tion invocations and innermost loop iterations.
For the remaining parts of the program, thread
boundaries are put at places so that the result-
ing threads have a maximum size.

For clarity, it should be noted that when used
in different contexts, the term thread may have
different semantics. For the rest of paper, we
will use the term static thread to refer to a por-
tion of control flow graph defined as thread at
compile time, and a plain thread to refer to a
stream of instructions from a static thread ac-
tually executed by a PU.

3. Thread Overheads

3.1 Reducing Thread Overheads Effect

Many efforts have been done to reduce exe-
cution penalties originating from data misspec-
ulation, control misspeculation, and synchro-
nization/communication latency [8–11]. How-
ever, little attention has been paid to perfor-
mance degradation caused by thread overheads.
This problem arises when there are many small
threads created during the execution. This pa-
per focuses on this problem and offers a solution
to reduce the effect of these overheads.

In general, thread overheads can be catego-
rized into:

• thread start overhead: time required to
schedule a thread into a processing unit

• pipeline fill overhead: time required for
a processing unit to fill its pipeline before it
can execute any instructions in the thread

• pipeline drain overhead: time required
for a processing unit to retire remaining in-
structions left in the pipeline after it finished
executing a thread

• thread stop overhead: time required to
stop the execution of a thread and commit
its speculative state to architectural state

For our baseline processor, the thread start
and stop overhead are set to one cycle each.
The sum of pipeline fill and drain overhead is
approximately equal to the number of pipeline
stages, which is six in our baseline processor.
Thus, in our case, the total overhead is approx-
imately eight cycles.

Since the trend in microprocessor design is
toward deeper pipeline and more complex de-
sign, it is very unlikely that these overheads can
be reduced. Thus, rather than trying reduce
the overheads themselves, we should find a way
to reduce their effect to processor performance.
There are a number of alternatives available:

• Use simpler narrow-issue cores as PUs and
increase the number of the PUs. This ap-
proach has some drawbacks. First, simpler
narrow-issue cores will give inferior perfor-
mance when used in traditional execution
(single threaded execution). Second, the
hardware cost and complexity for managing
speculative multithreaded execution tend to
increase when more PUs added.

• Introduce a mechanism to let a processing
unit start fetching another thread as soon
as there is no more instruction to be fetched
from the current thread. This approach can

研究会Temp

研究会Temp

研究会Temp

研究会Temp

研究会Temp
－130－

3

effectively hide the effect of thread over-
heads by overlapping the execution process
of the two threads. However, it may intro-
duce complexity and considerably increase
the requirements of hardware support.

• Form larger threads so that the proportion
of overhead to the actual execution cycles
decreases. However, we may not freely cre-
ate large threads since large threads gener-
ally impose strong inter-thread data depen-
dencies.

Although the second approach also looks
promising, we choose to employ the third ap-
proach. As it will be shown later, this approach
can be implemented with simple hardware sup-
port while still giving substantial improvement
in performance.

3.2 Thread Size and Performance

We conducted a preliminary evaluation to
give a more concrete understanding on the rela-
tion between thread size and the performance
achieved by speculative multithreaded execu-
tion. It is also intended to verify the trade-off
between decreasing overhead effect and increas-
ing data dependency when the threads are made
larger.

Fig. 2 Normalized performance with fixed thread size

Figure 2 shows normalized performance when
a hypothetical thread partition algorithm which
can create threads with a fixed size is assumed.
Eight applications from Spec95int are used in
this evaluation. As the thread size was var-
ied from 10 to 50 instructions, the performance
showed a significant improvement due to the de-
creasing thread overhead effect. However, when
the thread size was further increased, the per-
formance started to degrade. At this point,
the limitation imposed by inter-thread data de-
pendency governed the performance achieved by
speculative multithreaded execution.

Although the absolute thread size values

shown in this evaluation do not necessarily have
important meanings, the evaluation results im-
ply that size of threads executed should be ad-
justed to a range that compromises the trade-
off of thread overheads and inter-thread data
dependency. Dynamic Thread Extension, de-
scribed in the following section, offers the flexi-
bility to fulfill this requirement.

4. Dynamic Thread Extension

4.1 Basic Idea

The idea behind DTE is to combine two or
more threads to form a larger thread whose size
is within a range that compromises the trade-off
of thread overheads and inter-thread data de-
pendency. From preliminary evaluation result
shown in figure 2, this range is approximately
between 30-60 instructions for our baseline pro-
cessor.

A

B

H

A
B

C
D

A
C

E
GB

D
F

HE
F

G
H

(a)
Threads in

program order

(b)
Conventional

Execution

(c)
Dynamic Thread

Extension enabled

PU0 PU1 PU2 PU3 PU0 PU1 PU2 PU3overhead

t t

Fig. 3 Basic idea of Dynamic Thread Extension

Figure 3 illustrates the idea of DTE. Suppose
we are executing threads A to H in a sequence
shown in figure(a). Conventional speculative
multithreading architecture schedules thread A
to PU0, B to PU1, and so on, as shown in fig-
ure(b). If the size of these threads is small,
thread overheads will take a significant portion
of execution time. In contrast, DTE combines
consecutive threads, thread A and thread B,
thread C and D, and so on, if it founds the
threads are small in size. The combined threads
are then executed as single chunks in each PU,
as shown in figure(c). In this way, the portion
of overheads to execution time can be reduced
and the overall performance of speculative mul-
tithreaded executed can be improved.

4.2 Why Dynamic Thread Extension ?

Figure 4 shows the distribution of number of
instructions, categorized by the size of thread in
which the instructions were executed. The par-
titioning method employed in this data is as de-
scribed in 2.2. According to this figure, 56% of

研究会Temp

研究会Temp

研究会Temp

研究会Temp

研究会Temp
－131－

4

Fig. 4 Distribution of number of instructions executed
within a thread whose size between n−(n+10)
instructions, where n is varied between 0− 110

Fig. 5 Distribution of number of instructions, exe-
cuted in threads whose size is less than 30 in-
structions

the executed instructions are belong to threads
whose size is less than 30 instructions. It can be
imagined that since the threads are very small,
the performance suffers severely from the effect
of thread overheads. Thus, a mechanism such
as DTE is required to improve this situation.

A question of, whether conventional compiler
techniques such as function inlining and loop
unrolling are sufficient to do the task of creat-
ing larger threads, may arise. Function inlin-
ing reduces the number of small threads com-
prising functions as a whole, whereas loop un-
rolling is useful to enlarge the threads created
from loop iterations. Our investigations how-
ever suggested that these techniques may not
be sufficient. Figure 5 shows the distribution
of number of instructions, executed in threads
whose size is less than 30 instructions. These
threads are classified into:

(1) function threads: threads that contains the
whole function

(2) loop iteration threads: threads that are cre-
ated from innermost loop iterations (one it-
eration per thread)

(3) other type of threads: threads that are
not classified either to (1) or (2), generated
mostly due to the restriction that thread
boundaries should always be put at function
calls

Function inlining and loop unrolling may help
reduce the number of small threads of type (1)
and (2). However, since for most applications
these types of threads occupy only small por-
tion of the total threads, we cannot expect ad-
equate performance improvement by employing
these techniques alone. Thus, a more universal
approach is required. Since DTE is theoretically
applicable to all types of threads, we may expect
more performance improvement from it.

4.3 Implementation

DTE may be implemented completely in the
hardware. However, since it is preferable to keep
the hardware simple, we moved some function-
alities into the software. The implementation is
described as follows.

Compiler support
For each statically defined thread the compiler

estimates its size (the number of instructions the
thread will contain when executed). We em-
ployed a simple estimation method that takes
the average size of all possible paths between
the entry point and exit points of the thread.

After estimating the size, the compiler decide
whether the thread should be marked extendable
or not-extendable. If the estimated size is less
than or equal to a preset threshold, the thread
is marked extendable. Otherwise, it is marked
not-extendable. We used two types of thread
start instruction, thrstart ext and thrstart noext,
to distinguish extendable from not-extendable
threads.

Hardware support
Hardware to support DTE is implemented in

each PU of the CMP. The hardware is respon-
sible to decide whether the execution of an ex-
tendable thread should be extended to the suc-
cessor thread, or be left unextended. We pre-
pare a counter to count how many dynamic in-
structions has been fetched (not including in-
structions from mispredicted control path or vi-
olating execution). We also prepare an extended
flag bit that when asserted indicates that the ex-
ecution of a thread will be extended.

Figure 6 shows the state diagram of DTE
hardware. The state Normal corresponds to
the state when the extended flag is cleared,
whereas the state Extended corresponds to the
state when extended flag is asserted. The in-
struction counter is assumed to be reset to zero
before an execution starts.

When the execution of a thread starts and the
first instruction in the thread is a thrstart noext
then the state changes to Normal. In this case,

研究会Temp

研究会Temp

研究会Temp

研究会Temp

研究会Temp
－132－

5

Start

Normal

End

Extended

thrstart_ext
counter=0thrstart_noext

counter=0

thrstart_ext
counter=...

thrstart_noext
counter=...

thrstart_noext
counter=...

thrstart_ext
counter>threshold

thrstart_ext
counter<=threshold

Fig. 6 State diagram of Dynamic Thread Extension
hardware

the execution will terminate the next time it
reaches any thread start instruction, either a
thrstart noext or a thrstart ext. The value of
instruction counter is ignored in both cases.

When the execution of a thread starts and the
first instruction in the thread is a thrstart ext,
then the state changes to Extended. In this case,
the execution of the thread will be extended to
include at least the next one thread. It should
be noted that in this state, all register commu-
nication instructions will be ignored since the
register values may be redefined when the exe-
cution is extended.

When in Extended state, there are three pos-
sible state transitions of DTE hardware:
• If the next thread start instruction reached

is a thrstart noext, then the state changes
to Normal and the execution will terminate
the next time it reaches any thread start
instruction.

• If the next thread start instruction reached
is a thrstart ext and the value of instruction
counter is greater than a preset threshold,
then the state changes to Normal and the
execution will terminate the next time it
reaches any thread start instruction.

• If the next thread start instruction reached
is a thrstart ext and the value of instruc-
tion counter is less than or equal to the
preset threshold, then the state remains un-
changed. The execution will be further ex-
tended.

As can be imagined from the above explana-
tion, DTE can be implemented using a very sim-
ple hardware. Moreover, it requires no inter-PU
communication. Thus, it is very unlikely that it
becomes the bottleneck of the processor’s criti-
cal path.

Assuming that the compiler can accurately es-

timate the thread size and the threshold value
used by the compiler is less than or equal to
the threshold value used by the hardware, DTE
guarantees that the size of chunk of instruc-
tions the processor executed as a single thread
is more than the hardware threshold. However,
since the estimation cannot be 100% accurate,
we could expect that there will exist a number
of threads whose size is less than or equal to the
hardware threshold.

5. Evaluation

We conducted simulations to evaluate the
benefit of DTE in speculative multithreaded ex-
ecution. Considering the result of preliminary
evaluation already shown in figure 2, we set the
compiler threshold to 20 instruction, and the
hardware threshold to 30 instruction. We ex-
pected that larger portion of programs will be
executed in threads whose size is larger than 30
instructions, thus reducing the effect of thread
overheads and increasing the achieved perfor-
mance.

Fig. 7 Performance improvement by Dynamic Thread
Extension

Figure 7 shows the results of simulations.
When DTE is employed, all applications showed
performance improvements, ranging from 8.5%
to 16%, or 13% in average. Figure 8 shows
the distribution of number of instructions ex-
ecuted within a thread whose size is within the
specified range, when DTE is disabled and en-
abled. It becomes clear that DTE succeeded to
reduce the fraction of program executed in small
threads, thus, shifting the distribution graph to
the right. The fraction of program executed in
threads whose size is less than 30 instruction,
for example, is reduced from 56% to 15%.

Our evaluation results shown above, verifies
that DTE is an effective mechanism for reduc-
ing the number of small threads, thus reducing

研究会Temp

研究会Temp

研究会Temp

研究会Temp

研究会Temp
－133－

6

Fig. 8 Distribution of number of instructions executed
within a thread whose size between n−(n+10)
instructions, where n is varied between 0−110,
with and without using DTE

the effect of thread overheads. It should also
be noted that the potential of performance im-
provement by DTE is actually larger than what
was shown above. There is a limitation in our
current register communication scheme, i.e. a
register value defined in an Extended state, may
be sent to the consumer PU only after the execu-
tion enters Normal state, even though the regis-
ter is never redefined any time later. In case an
ideal register communication mechanism is as-
sumed, DTE gives performance improvements
between 15% to 37%.

6. Concluding Remarks

This paper investigated thread overheads
problem, and verified its impact on the per-
formance of speculative multithreaded execu-
tion. We investigated a number of possible so-
lutions to the problem, and proposed a mecha-
nism called Dynamic Thread Extension (DTE).
By moving some functionalities to the compiler,
we showed that DTE can be implemented using
a simple hardware support. Despite the sim-
plicity, our evalution results showed that DTE
helps the processor achieving a performance im-
provement of 13% in average.

However, there are still a number of refine-
ments needed to further improve the effective-
ness of DTE. We plan to investigate the follow-
ing issues:
• Register communication mechanism that

can more effectively exploit the potential of
DTE.

• Incorporating data dependence information
for the compiler to decide whether a static
thread should be marked extendable or not.

• Hardware refinement, for example rather
than using a counter of number of fetched
instructions, the hardware may should have
to use a counter of execution cycles.

• The interaction between DTE and next-
thread prediction mechanism.

Acknowledgement

This work is partially supported by Grant-in-
Aid for Scientific Research, Ministry of Educa-
tion, Culture, Sports, Science and Technology,
Japan, Basic Research No.(B)(2)50291290.

References

[1] G.S. Sohi, S.E. Breach, and T. N. Vijaykumar,
Multiscalar Processors, Proc. 22nd ISCA, pp.
414-425, 1995

[2] L. Hammond, M. Willey, and K. Olukotun,
Data Speculation Support for a Chip Multipro-
cessor, Proc. 8th ASPLOS, pp. 58-69, San Jose
CA, 1998

[3]
���������

, 	�
��� , ������� , ��
���� ,����� ��! "$#&%�')(�*�+-,/.103254�67,98�:�;
<-=?>A@�BDC "�#?EF.HGJILK�M$N)OQP�RAS

SKY,
Proc. JSPP’98, pp.87-94, June 1998

[4] T�U�V , W��YXDZ , [�\YX^] , _�`�� ,
��a

bdc�e
, On Chip Multiprocessor f^gih)j ; <K�M�NkO PkR)S

MUSCAT
*5l/m

, Proc. JSPP’97,
pp.229-236, 1997

[5] V. Krishnan, J. Torellas, A Chip-Multiprocessor
Architecture with Speculative Multithreading,
IEEE Transactions on Computers, Vol. 48, No.
9, Sept 1999

[6] A. Gonzalez and P. Marcuello, Speculative
Multithreaded Processors, Proc. 12th Interna-
tional Conference on Supercomputing, July
1998

[7] H. Akkary, M.A. Driscoll, A Dynamic Mul-
tithreading Architecture, Proc. 31st MICRO,
Nov-Dec 1998

[8] T.N. Vijaykumar and G.S. Sohi, Task Selec-
tion for a Multiscalar Processor, Proc. 31st MI-
CRO, Nov-Dec 1998

[9] 	-
n�&� ,
�/�o�5�)�

, �/����� , ��
���� , h
j�p�q =r>�@Fsut +Q,/.A0wv/x�y�z , 97-ARC-128
pp.127-132, Mar 1998

[10] {|V } , T)UoV , W��iX1Z , ~?�J��� , �/�J��
, _�`)� , ������] , h/j ; < K/MAN)OAP)R^S
g������ ; <��D������� '5��z , Proc. JSPP’98,
pp.383-390, 1998

[11] R. Kobayashi, M. Iwata, Y. Ogawa, H. Ando,
and T. Shimada, An On-Chip Multiprocessor
Architecture with a Non-Blocking Synchroniza-
tion Mechanism, Proc. 25th EUROMICRO,
pp.432-440, Sept 1999.

[12] N.D. Barli, H. Mine, S. Sakai, and H. Tanaka,
A Thread Partitioning Algorithm using Struc-
tural Analysis, ARC-2000-139 Vol. 2000, No. 24,
pp. 37-42, Aug 2000

[13] C. Iwama, N.D. Barli, S. Sakai, and H. Tanaka,
Improving Conditional Branch Prediction on
Speculative Multithreading Architectures, Proc.
JSPP 2001, pp. 165-172, Jun 2001

研究会Temp

研究会Temp

研究会Temp

研究会Temp

研究会Temp
－134－

