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Deep Sub-Micron Interconnects and Expectation to Superconnect
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Abstract  Superconnect technology which is based on interconnections around 10um design rule is expected to realize new
realm of electronic system integration together with System-on-a-Chip approaches. The superconnect technology will be
helpful in solving deep submicron (DSM) interconnection issues of VLSI’s such as IR voltage drop and RC delay problems.
The accumulated knowledge database on board and package will be also useful in confronting DSM interconnection issués like

inductive effects.
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1. Abstract
Superconnect
interconnections around 10pm design rule is expected to
realize new realm of electronic system integration
approaches. The

technology which is based on

together with System-on-a-Chip
superconnect technology will be helpful in solving deep
submicron (DSM) interconnection issues of VLSI’s such
as IR voltage drop and RC delay problems. The
accumulated knowledge database on board and package
will be also useful in confronting DSM interconnection
issues like inductive effects.

2. Scaling and Issues of Current LSI Technology

Taking a close look at the scaling law, we can see that
the following three crises are leaning over the LSI
technology.

* Power crisis

+ Interconnection crisis

 Complexity crisis

The power crisis is depicted in Fig.2. Lower operation
voltage naturally increases operation current, which in
turn requires thicker metal layers for the current to be
distributed throughout the chip without IR-drop. One of
the key approaches to low-power design is the memory
embedding. By embedding memories, inter-chip
communication power can be reduced by two orders of
magnitude. The memory embedding, however, is an
expensive option, since it increases process steps. A
new system-level integration can be a solution to this
problem.

As for the interconnection crisis, RC delay increase
and IR-drop issue are some of the more stringent issues.
Thicker metal layer used in an interposer/package/board
may mitigate the problem.

Complexity crisis can only be solved by re-use of the
pre-designed blocks and designing at higher abstraction
level. Thus, System-on-a-Chip (SoC) where many pre-
designed IP’s are amalgamated at the higher abstraction is
one of the candidates to cope with the complexity crisis.
Future electronic systems, however, cannot be built only
with the SoC, since many SoC. issues have become
evident as follows.

+ Huge initial investment for masks & development

* Un-distributed IP’s (i.e. CPU, DSP of a certain
company)

IP testability, upfront IP test cost
» Process-dependent memory IP’s
« Difficulty in high precision analog IP’s due to noise

+ Process incompatibility with non-Si materials
and/or MEMS

The huge investment in developing the SoC process

to embed different kinds of technologies is one of the

most vital issues.

3. Superconnect

Recently, however, a new system-level integration
called 'superconnect' is attracting attention[1-4], which
may solve SoC problems. The superconnect connects
separately built and tested chips not by printed circuit
boards but rather directly to construct high-performance
yet low-cost electronic systems. The superconnect may
use around 10 micron level design rules {4]. Sometimes
LSI's in the superconnect are connected in three-
dimensional fashion to achieve the higher pérformance
and the smaller geometry. System-in-a-Package (SiP)
composed of stacked chips using bonding or interposers
is one realization of the superconnect. The superconnect
mitigate IR-drop problems and RC delay problems.

There has been a large gap between on-chip and off-
chip interconnects in of power, density,
performance, cost and turn-around-time. Basically, the
large gap comes from the big difference between the
design rules of on-chip and off-chip interconnects. It
can be said that there is a technology vacuum at present
between 1um level on-chip interconnect and 100um level
off-chip interconnect. The superconnect will fill the gap
between on-chip and off-chip interconnect, making use of
10um level design rule.

Some of the important issues in the future system-

terms

level integration are as follows.
» Special design tools for
 co-design of LSI’s and assembly
+ High-density reliable substrate and metallization

placement & route for

technology
+ low-cost, available known good die (reworkablility
and module testing)

4, Issues in Deep Sub-Micron (DSM) Interconnects
The issues for DSM interconnects are summarized as

follows: -

Larger current
IR drop (static and dynamic)
Reliability (electro-migration)
Smaller geometry / Denser pattern
RC delay



Signal Integrity

Crosstalk noise

Delay fluctuation
Higher speed

Inductance

EMI

Among others, IR drop and RC delay problems can have
help from the superconnect technology. To fully utilize
the merit of the thick metal layers of superconnect, co-
design of VLSI and assembly will be necessary. As for
inductive effects which appear in low resistance
interconnects in 'VLSI’s such as clock lines, power lines
and wide buses, the knowlédge accumulated in board and
package designs will be transferred to VLSI community.
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Issues in System-on-Chip

Un-distributed IP’s (i.e. CPU, DSP of a certain company)

Low yield due to-larger die size .
+ Huge initial investment for masks & development
+ IP testahility, upfront IP test cost

* Process-dependent memory IP's

.

Difficulty in high precision analog IP’s due to noise

Process incompatibility with non-Si materials and/or

MEMS

SoC vs. SiP

Smaller area.

Shorter interconnect
Optimized process for
each die (Analog, DRAM,
MEMS

Good electrical isolation
Through-chip via

Heat dissipation is an
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+ Special design tools for placement & route for co-

design of LSI's and assembly

« High-density reliable substrate and metalliiation

technology

+ Low-cost, available known good die

(reworkablility and module testing)
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