oo ooooooooooo
IPSJ SIG Technical Report

20030 ARCO 1540 O (5)

20030 80 5

High speed OS simulation using high performance microprocessor

MoHAMMAD MAHBUBUR RAHMAN," TAKASHI NAKADA
and HIROSHI NAKASHIMAT

Hardware-software co-design aims to provide an integrated environment for concurrent spec-
ification, validation and syntheses of both hardware and software. In order to ensure the ac-
curacy and performance of hardware-software co-design, high speed simulation of system level
is indispensable. Is spite of this, many simulators omit the system level simulation in order
to make the simulation faster and simpler. Therefore, this paper presents the development of
a fast and accurate simulator, based on SimpleScalar, which is capable of micro-architectural
modeling and system level simulation. Our primary contribution is to implement the neces-
sary modification into the simulator, and build necessary environment for running a real-time
operating system. With this simulator we can observe task switching and interrupt processing

in a real-time operating system.

1. Introduction

The emergence of the system-on-chip(SOC)
era is creating many challenges at all stages
of the design process. At the system level,
engineers are reconsidering how designs are
specified, partitioned and verified. Hardware-
software co-verification aims to provide an in-
tegrated environment for concurrent specifica-
tions, validations and syntheses of both hard-
ware and software. These tools allow designers
to run software against a hardware design be-
fore a prototype is available. This is accom-
plished by executing the software on a logic
simulation of the hardware design. Therefore,
execution-driven simulation is a valuable tool
for the evaluating new computer architectures,
since it allows the researchers to modify virtu-
ally any part of the computer system without
incurring the cost of developing new hardware.

Designing a detailed execution-driven simula-
tor is a trade off between accuracy, simulation
speed, and development effort. In many cases,
assumptions are made to assure the simpler and
faster simulation. Omne simplification that re-
duces simulation time is to model only user level
code and not the machine’s privileged operating
system code. As a result, simulators ignore op-
erating system and I/0O activity. Unfortunately,
removing the operating system from the sim-
ulation model degrades both the accuracy and
the applicability of the simulation environment.
For instance, simulation of hardware-software
co-verification tools can give unexpected re-

1 Toyohashi University of Technology

sults as an effect of omiting simulation of op-
erating system. Even though some simulators
simulate operating systems, they simulate it in
a very slow and complex manner. Therefore,
simulator capable of fast and accurate micro-
architectural modeling with system level simu-
lation is badly needed.

In this paper, we describe the development
of a fast and accurate simulator which is ca-
pable of micro-architectural modeling and sys-
tem level simulation. With this simulator we
can observe task switching and interrupt pro-
cessing in a real-time operating system while
the main software execution interacted with the
hardware in the target system.

2. Related works

There exists a number of simulation tools
that contain detailed models of today’s high
performance microprocessors. For example,
Maynard et al. showed that commercial appli-
cations are typically more challenging with re-
spect to their interaction with the memory sys-
tem and branch prediction mechanisms. One
distinctive factor is that they typically have
more operating system interactions than scien-
tific/engineering applications. By contrast, sci-
entific/engineering applications typically spend
a very small fraction of their execution in sys-
tem calls. As a result, they often disregard the
impact of operating system code on architec-
tural decisions.

The handling of system calls by the micropro-
cessor simulator determines which of two cat-
egories they fall under. The first category of
simulators uses a method called system call by

0 250

研究会Temp
社団法人 情報処理学会　研究報告IPSJ SIG Technical Report

研究会Temp

研究会Temp
2003－ARC－154　　(5)

研究会Temp
2003／8／5

研究会Temp
－25－

proxy, in which system calls are executed by the
simulators with the help of the operating sys-
tem of the host computer. These are the user
level simulators. Because the handling of the
system call is not performed within the simula-
tion context, the simulator cannot monitor the
effect of the system call. This approach reduces
the accuracy of the results, but simplicity allows
quick simulation. Several tools such as Asim,
MINT, Rsim, Shade, and SimpleScalar belong
to this group. Our paper implements a simula-
tor based on SimpleScalar which is capable of
operating system simulation. We will describe
about SimpleScalar later in more details.

The second category installs a virtual oper-
ating system in it and when a system call oc-
curs it uses the installed virtual operating sys-
tem to process it. These are the system level
simulators. The development of complete sys-
tem simulators has been directory motivated by
the inability of user-level simulators to target
complex workloads. Although complete system
simulation tools are extremely large and com-
plex, these benefits are diverse and significant
such as evaluation of hardware design, devel-
opment of operating system, and performance
tuning of workloads. Complete system simula-
tion approaches such as SimICS, SimOS, MR-
Rsim can functionally model the execution of
applications with operating system interaction
on the instruction-set architectural abstraction
level.

e SimOSY

SimOS is an environment for analyzing per-
formance of architectural and software de-
sign alternatives of computer systems. It
can boot IRIX 5.3 or DEC UNIX and run
realistic workloads. Furthermore, the large
and complex nature of operating systems
required SimOS to include multiple inter-
changeable simulation models of each hard-
ware component that can be dynamically
selected at any time during the simula-
tion. The emulation of operating system
in SimOS is complex than the emulation of
a complete machine simulation approach.

e SimICS?

SimlICS is an instruction-set simulator de-
veloped at the Swedish Institute of Com-
puter Science(SICS). It simulates one or
more SPARC V8 processors, and supports
multiple physical address spaces, system
level code, and emulation of the SunOS 5.x
API for direct analysis of user-level pro-

grams.

e ML-Rsim®
ML-RSIM is an event-driven cycle-accurate
simulator that integrates detailed proces-
sor and cache models with a complete
I/0O subsystem. Combined with the Unix-
compatible Lamix operating system, ML-
RSIM provides a unique tool that allows
researchers to study the interaction of com-
puter architecture, 1/O activity, system
software and applications. ML-RSIM ex-
ecutes static SPARC V8 binaries. The
Lamix system call interface is compatible
with Solaris 2.8. In general, applications
compiled for ML-RSIM can execute on na-
tive Sparc/Solaris systems without modifi-
cation. No special libraries or include files
are required to compile applications for the
simulator.

e SimpleScalar®
SimpleScalar toolset provides an infras-
tructure for simulation and architecture
modeling. The toolset can model a vari-
ety of platforms ranging from simple uni-
pipelined processors to detailed dynam-
ically scheduled micro-architectures with
multiple-level memory hierarchies. It is the
most widely used user-level simulator be-
cause of its flexibility in modeling a wide
range of micro-architectural design points.
But since the effect of the operating system
is ignored in SimpleScalar, the accuracy
and applicability of the simulation model
is degraded.
This paper introduces a simulator which
is based on SimpleScalar and is capable of
supporting system level simulation and cy-
cle level micro-architecture simulation.

3. Overview of the proposed simulator

The proposed simulator is based on Sim-
pleScalar and capable of simulating a real-time
operating system on it. SimpleScalar runs as a
target machine on the host, which consists sim-
ulated models of CPU instructions and pipe-
lines. On the top of the machine, we port a
real-time operating system.

3.1 SimpleScalar simulator

This subsection briefly describes the func-
tionality of SimpleScalar and memory and the
memory address mapping.

SimpleSclar models many different instruc-
tion set architectures(ISAs), the ALPHA and
MIPS excluding the privileged instructions. An

0260

研究会Temp
－26－

ISA is the protocol for the commands, a micro-
processor implements. In this project, we mod-
ified the simulator’s implementation that mod-
els a pipeline similar to MIPS R10000. This
simulator uses a instructions set of MIPSIV.
The toolset implements six simulators, which
can model the microprocessors in different lev-
els of details. The functional model of simula-
tor is sim-safe and the out-of-order simulation
is sim-outorder. This paper focused on sim-safe
to simplify the modifications.

Before SimpleScalar executes a benchmark
program, it first creates a memory space for
the program. The simulator loads the program
from the hard drive into this memory space.
Along with the actual program, the simulator
provides space for data storage mechanisms, in-
cluding the stack and a data segment. To refer-
ence this memory space, the simulator creates
a memory page table for each process. This is
similar to the manner in which Unix systems
load programs. Treating the emulated operat-
ing system as a benchmark program is the logi-
cal extension of this scheme. The emulated op-
erating system is given its own memory space.

3.2 Operation system choice

There are several embedded operating sys-
tems suitable for interaction into the targeted
simulator. However, only few operating sys-
tems have support for multiple processors and
have freely available source code. One such op-
erating system is TOPPERS/JSP .

TOPPERS/JPS kernel is developed by
Nagoya university/ Toyohashi Institute of Tech-
nology Real-time System Laboratory as a part
of the TOPPERS project which is a real-time
operating system based on the specifications
of u TTRON4.0 . JSP is the abbreviation of
Just Standard Profile which indicates that it
follows the « ITRON4.0 specifications.

We will use JSP1.3 kernel that targets MIPS.
We port this kernel and simulates it on the Sim-
pleScalar simulator.

4. Methods of simulation

There are two main tasks to be performed
in order to simulate an operating system on
SimpleScalar. First, we need to modify Sim-
pleScalar so that it becomes capable of running
an operating system on it. Secondly, we have
to port an operating system in SimpleScalar.

In order to simulate an real-time operating
system on SimpleScalar, implementation of in-
terruption is the most necessary task. Thus,

Simulator needs an extension including imple-
menting interrupt controller and inclusion of
privileged instructions. Here the privileged in-
structions are move from/to Coprocessor0, eret,
syscall. MIPS specification gets 17 kinds of in-
terruptions and exceptions that should be im-
plemented. In addition, modifying the present
compiler is also needed so that it can com-
pile the newly added privileged instructions
and thus can compile the SimpleScalar-ported
JSP1.3 kernel.

Porting of an operating system requires
rewriting of the interrupt handler according the
instruction set of the target system. It also re-
quires porting of boot loader and initialization
of kernel.

In the JSP1.3 specification, the preemptive,
priority-based task scheduling is conducted
based on the priorities assigned to tasks. If
there are a number of tasks with the same pri-
ority, scheduling is conducted on a ”first come,
first served” (FCFS) basis.

The precedence for executing each processing
unit and the dispatcher is specified as follows:
(1) interrupt handlers, time event handler
(2) dispatcher(one of the kernel process)
(3) tasks

Task management functions include the abil-
ity to create and delete a task, to activate and
terminate a task, to cancel activation requests,
and to reference the state to a task.

As JSP1.3 kernel does not have any procedure
for file management and network management,
we do not emphasis into these at this stage of
simulation. We will implement timer interrup-
tion in order to perform the task management
of the JSP1.3 and we will use the proxy sys-
tem handler of SimpleScalar in order to pro-
vide environment to perform I/O tasks needed
by JSP1.3. Figure 1 shows the structure of Sim-
pleScalar with the proposed implementation of
operation system.

Here we describe, the design of interrupt con-
troller and privileged instructions.

4.1 Interrupt controller

In addition to its normal computation func-
tions, any CPU needs units to handle inter-
rupts, and some way of observing or control-
ling on-chip functions like caches and timers. In
MIPS architecture to perform this task, there
is a Co-processor, Co-processor0). This Co-
processor(has 32 registers. Among these regis-
ters the following registers are essential for our
implementation of interruption.

0270

研究会Temp
－27－

Appication

JSP1.3 kernel

SimpleScalar ISA Proxy System Call

Machine Defination Proxy Syscall Handler

BPred

Resources

Simulator Cure e

|
0

Cache

==

Memory ‘

Host platform

Fig.1 Modified structure of SimpleScalar

Now, we will describe these registers with rel-
evant fields of interruptions.
e Count/Compare registers

These registers provide a simple general-
purpose interval timer that runs continu-
ously and that can be programmed to in-
terrupt.

The Count register acts as a real-timer. It
is incremented at exactly half the CPU’s
pipeline clock rate. When it reaches the
maximum 32-bit value it overflows quietly
back to zero. The only way to disable
the timer interrupt is to negate the inter-
rupt mask bit, IM[7], in the Status register.
timer interrupt cannot be disabled without
also disabling the Performance Counter in-
terrupt, since they share IM[7].

The Compare register can be programmed
to generate an interrupt at a particular
time, and is continually compared to the
Count register. Whenever their values
equal, the interrupt bit IP[7] in the Cause
register is set. This interrupt bit is reset
whenever the Compare register is written.
Status register

The Status register(SR) is a read /write reg-
ister that contains the operating mode, in-
terrupt enabling, and the diagnostic states
of the processor. From bits no. 15 to 8
is the IM(Interrupt Mask)field which Con-
trols the enabling of each of the external,
internal, and software interrupts. An in-
terrupt is taken if interrupts are enabled,
and the corresponding bits are set in both

Table 1 Registers necessary for interruption handling

mnemonic | no. | Description

Count 9 Timer count

Compare 11 Timer compare

Status 12 Processor Status register
Cause 13 Cause of the last exception
EPC 14 Exception Program Counter

registers

@PU

nt cO nfcO

Co-Processor 0

@2
registers

Fig.2 Implemented interrupt controller and
privileged instructions

the Interrupt Mask field of the Status reg-
ister and the Interrupt Pending field of the
Cause register. The bits no. 4-3, 2, 1, 0 are
fields that define Kernel, Supervisor, User
mode, Error Level, Exception Level and en-
able of interruption respectively.

Cause register

The Cause register primarily describes the
cause of the most recent exception. In
addition, fields also control software in-
terrupt requests and the vector through
which interrupts are dispatched. This 32-
bit read/write Cause register describes the
cause of the most recent exception. The
bits no. 15 to 8 are IP field that defines In-
terrupt Pending and indicates an interrupt
is pending. These bits follow the CPU in-
puts for the six hardware levels. Any of the
bits active when enabled by the appropri-
ate Status (IM) bit and the global interrupt
enable flag IE will cause an interrupt. The
setting of bit 15 indicates timer interrup-
tion. The bits no. 5 to 2 are ExcCode field
that defines what kind of exception hap-
pened.

EPC register

The Exception Program Counter(EPC)is a
read/write register that contains the ad-
dress at which processing resumes after an
exception has been serviced. The processor
does not write to the EPC register when
EXL bit in the Status register is set to a 1.
Figure 2 shows the implemented interrupt
controller and privileged instructions.

4.2 Privileged instructions

Processing of interruption requires privileged
instructions. In order to processing interrup-
tion, the following instructions are needed.

e MFCO0:Move From Co-processor(

— Format:
MFCO rt,rd

研究会Temp
－28－

— Description:
The contents of Co-processor register
rd of the Co-processor(are loaded into
general register rt.

e MTCO0:Move To Co-processor(

— Format:
MTCO rt,rd

— Description:
The contents of general register rt are
loaded into Co-processor register rd of
Co-processor(.

e ERET:Exception return

— Format:
ERET

— Description:
ERET is the instruction for returning
from an interrupt or exception. Unlike
a branch instruction, ERET does not
execute the next instruction. ERET
loads the PC from the EPC, and clear
the EXL bit of the Status register.

5. Implementation

5.1 Modification of SimpleScalar

We modified SimpleScalar according the
specification of MIPS R10000. We implemented
an interrupt controller which consists of 32 reg-
isters. We introduced privileged instructions
into the ISA of SimpleScalar in order to make it
capable of running interrupt handler. We also
modified the compiler and implemented a timer
that keeps track of time in the hardware and
generates OS tick.

5.1.1 Modifying compiler

For implementing new instructions in ISA
needs modification of compiler. The compiler
used for SimpleScalar is sslittle-na-sstrix-gcc.
Instead of modifying the compiler itself, we
modified the assembler portion of the com-
piler. We will write interrupt handler by us-
ing these instructions by using asm inline so
that these instructions can be compiled with-
out interpreting. Thus the modified assembler
gas will change appropriate machine code for
these instruction making the simulator CPU to
execute them.

5.1.2 Implementation of timer

We implemented a timer in SimpleScalar.
The timer has a single register which increases
at every other clock of the processor. We set
the timer interruption to be occurred at every
1 milli sec according the specification of JSP
kernel.

Here, we describe implementation of timer in-

unused

Text(code)

lDala

1 stack

unused

Interruption
handler

Fig.3 Memory implementation of SimpleScalar

terruption which is responsible for behaviour of
timer.

e Cause: A Timer interrupt is raised when
the Count and Compare registers reach the
same value.

e Processing: When a timer interruption oc-
curs hardware does the following tasks.

— ExcCode of Cause register is set.

— The IP7 bit of the Cause register is set.

— The EPC register contains the address
of the following instruction.

— EXL bit of Status register is set.

e Servicing:

When a timer interruption occurs, inter-
rupt handler does the following tasks
— Compare register is reset.
— Reseting Compare register will auto-
matically clean the IP7 bit in Cause
register.
Figure shows the memory implementation of
SimpleScalar.

5.2 Porting of JSP1.3

Porting of an operating system needs task
management, file management, I/O manage-
ment and network management. The most im-
portant of them is task management. We also
ported the system of interrupt handler since it
differs on the target hardware interface. We
ported kernel initialization and boot loader.

5.2.1 Interrupt handler

We implemented the interrupt handler of

the jspl.3 according to the instruction sets of
SimpleScalar. This program writes the inter-
rupt handler code in a fixed address of mem-
ory (0x80000180) before enabling interruptions.
When an interruption is occurred the program
control will be transferred into the interrupt
handler and after processing the interruption,
the normal execution will restore. The program
uses kO, k1 register of general purpose register
which are reserved for kennel use. The algo-

0290

研究会Temp
－29－

rithm of this interrupt handler is described as
follows:

e The processing of interruption needs using
of registers. We use some general purpose
registers for that. Before using these regis-
ters, the contents of them are saved.

e Check the ExcCode of the Cause register
to find out the cause of interruptions.

e The processing code is different for inter-
ruptions. The program then goes the fixed
address according to the interruptions.

e While processing exceptions, it is possible
that interrupt pending bit of the Cause reg-
ister is set for timer interruptions. So, pro-
cessing of exceptions follow the check of TP7
bit of the Cause register as IM7 (mask bit
of Status resister is set) to find out whether
the timer interruption processing is needed.

e If there is a timer interruption, necessary
service is taken.

e The saved general purposed registers are
restored.

e Before restoring the main program, Exc-
Code of the Cause register is cleared.

e Restore the normal program execution.

5.2.2 Initialization of kernel

Kernel of JSP1.3 should be initialized in or-

der to make the system started executing. Ker-
nel initialization consists initialization of inter-
ruption mask in the task context, initialization
of interrupt handler and initialization of task
management. Therefore, initialization of timer
occurs and then starts the execution of kernel.
We also ported the link loader file of JSP1.3
into SimpleScalar. We define the .text section,
.data section and .bss section of JSP1.3 kernel
according the specification of SimpleScalar and
MIPS.

6. Simulation of JSP1.3 kernel in Sim-
pleScalar

We compiled a SimpleScalar-ported JSP1.3
kernel with the compiler for SimpleScalar in
order to make a binary of it. The programs
to be run on JSP1.3 kernel is also compiled
during the compile of the kernel and have a
common binary. Therefore, before entering the
main loop of instruction execution we write this
binary into a fixed defined place of the mem-
ory structure of SimpleScalar. Thus, the pro-
gram counter begins to execute from that de-
fined address. In this way, we simulate that
binary running on sim-safe, a simulator of Sim-
pleScalar. The operating system prints a mes-

sage and waits for a further instruction.
7. Conclusion and future work

SimpleScalar tool set, provides an infrastruc-
ture for simulation and architectural model-
ing, is enable to simulate only user-level con-
texts and omits the system level contexts. In
this paper, we discussed our efforts to port a
real-time operating system to SimpleScalar in
order to make it enable of simulating system
level contexts with a high performance micro-
architecture system. We modified SimpleScalar
in order to make it enable of simulating the
operating system. We aim to simulate system
level contexts in high-speed machine simulation
by combining the increasing power of today’s
computers in advance. In future, we aim to sim-
ulate the operating system into a complex pipe-
lined system. Furthermore, our future plan is
to process tasks parallelly by using clusters and
then hope to ensure high-speed simulation of
the operating system.

Acknowledgments This research is par-
tially supported by Semi-conductor Technology
Academic Research Center(STARC) Japan, un-
der project name Verification of performance of
the software designing with SpecC.

References

1) Mendel Rosenblum, Stephen A. Herrod, E. W.
and Gupta, A.: Complete Computer System
Simulation: The SimOS Approach, IEEE Par-
allel and Distributed Technology, Vol. 3, No. 4,
pp- 3443 (1995).

2) SimlICS: http:/www.simics.com.

3) ML-Rsim: http://www.cse.nd.edu/ mlrsim.

4) Burger, D. and Austin, T. M.: The Sim-
pleScalar Tool Set, Version 2.0 (1997).

5) Burger, D. and Austin, T. M.: SimpleScalar:
An Infrastructure for Computer System Mod-
eling, IEEE Computer, pp. 59-67 (2002).

6) Heinrick, J.: MIPS R10000 Microprocessor
User’s Manual: Version 2.0, MIPS Technologies
Inc. (2001).

7) MIPS, T.. MIPS64 Architecture for Pro-
grammers Volume I, II 1II: Resision 1.00, MIPS
Technologies Inc. (2002).

8) Hennessy, J. and Paterson, D.: Computer Or-
ganization and Design: The Hardware/Software
Interface, Morgan Kaufmann Publisher (1998).

9) Sweetman, D.: See MIPS Run, Morgan Kauf-
mann Publisher (1997)

10) Sakamura, k., Takada, H: « ITRON4.0 Spec-
ification, TRON ASSOCIATION,JAPAN, ver
4.0(2002).

0 300

研究会Temp
－30－

