WEKO3
アイテム
クラスPに属する全象なルールセット
https://ipsj.ixsq.nii.ac.jp/records/232898
https://ipsj.ixsq.nii.ac.jp/records/232898b696a72e-c76c-4793-ab66-ae65580ca8b3
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]()
2026年3月1日からダウンロード可能です。
|
Copyright (c) 2024 by the Information Processing Society of Japan
|
|
非会員:¥660, IPSJ:学会員:¥330, GI:会員:¥0, DLIB:会員:¥0 |
Item type | SIG Technical Reports(1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2024-03-01 | |||||||||
タイトル | ||||||||||
タイトル | クラスPに属する全象なルールセット | |||||||||
タイトル | ||||||||||
言語 | en | |||||||||
タイトル | Universal Rulesets in P | |||||||||
言語 | ||||||||||
言語 | jpn | |||||||||
資源タイプ | ||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_18gh | |||||||||
資源タイプ | technical report | |||||||||
著者所属 | ||||||||||
名古屋大学大学院情報学研究科 | ||||||||||
著者所属 | ||||||||||
名古屋大学大学院情報学研究科 | ||||||||||
著者名 |
吉渡, 叶
× 吉渡, 叶
× 小野, 廣隆
|
|||||||||
論文抄録 | ||||||||||
内容記述タイプ | Other | |||||||||
内容記述 | コンウェイの正規形有限ゲームにおいて,あるルールセットが任意のゲーム値を表現できるとき全象であるといい,その性質を全象性と呼ぶ.あるルールセットが全象であるならばゲームの表現の意味で最も複雑であると言える.一方,別の「複雑性」の指標として必勝判定問題の計算複雑性があり,この方面からの研究が理論計算機科学分野で盛んにおこなわれている.これまで多くの組合せゲーム(コンウェイの有限ゲームを含む)の必勝判定問題が PSPACE 困難などの計算困難なクラスに属することが示されているのに対し,全象であることがわかっているルールセットは,(いずれも必勝判定問題が PSPACE 完全である)一般化コナネ,タイル返し,Go on lattice,扉の向こうへ,の 4 つに限られており,必勝判定問題の計算複雑性と全象性の関係が注目されている.本研究では多項式時間で必勝判定が可能である全象ゲームが存在することを示す.具体的には,木かつグリッドに埋め込み可能なグラフに制限しても非不偏ゲーム版の一般化しりとりが全象であることを示す. | |||||||||
論文抄録(英) | ||||||||||
内容記述タイプ | Other | |||||||||
内容記述 | In combinatorial game theory, a ruleset is universal if it can represent any game value in the short Conway group. Universal rule sets are sufficiently complex that they may have important implications in the analysis of game values. Another well-studied concept of “complexity” of a ruleset is the computational complexity. In the field of theoretical computer science, many rulesets are shown to be computationally hard, such as NP-hard or PSPACE-hard, regarding the winner determination. Such hard rulesets include all rulesets currently known to be universal, i.e., GENERALIZED KONANE, TURNING TILES, GO ON LATTICE, and BEYOND THE DOOR. The fact raises a natural question: Is the winner-determination problem of every universal ruleset computationally hard (or not)? This paper answers the question by finding new universal rulesets whose winner determination problems belong to P, i.e., the class of the problems solvable in polynomial time. Specifically, we show that all partisan variants of GENERALIZED GEOGRAPHY proposed by Bosboom et al., whose winner determinations are shown to be P, are universal even if the input graph is a tree embeddable in a grid. | |||||||||
書誌レコードID | ||||||||||
収録物識別子タイプ | NCID | |||||||||
収録物識別子 | AA11362144 | |||||||||
書誌情報 |
研究報告ゲーム情報学(GI) 巻 2024-GI-51, 号 10, p. 1-7, 発行日 2024-03-01 |
|||||||||
ISSN | ||||||||||
収録物識別子タイプ | ISSN | |||||||||
収録物識別子 | 2188-8736 | |||||||||
Notice | ||||||||||
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. | ||||||||||
出版者 | ||||||||||
言語 | ja | |||||||||
出版者 | 情報処理学会 |