
PyHARK: A HARK-based python package for robot

audition and computational auditory scene analysis

Kazuhiro Nakadai1,a) Masayuki Takigahira2 Katsutoshi Itoyama1,2,b)

Abstract: This paper describes PyHARK, a Python package for open source robot audition software HARK, which

was newly introduced in HARK 3.4. There are two versions of PyHARK; online and offline. Both allow users to

access HARK directly from Python. Online PyHARK maintains the small overhead of module integration, and offline

PyHARK provides an easy interface to Python to make a script as easy as possible. Experimental results showed that

online/offline PyHARK achieved real-time processing even under a strict condition where HARK does not work in

real time.

Keywords: robot audition, HARK, Python, software package, real-time processing, online/offline processing

1. Introduction

HARK [1] has been being developped since 2008 as open

source robot audition software [2], [3], [4], [5]. Generally, a

GUI programming environment, HARKDesigner, is used to pro-

gram on HARK. It is user-friendly for beginners, but is not effi-

cient for expert programmers because a Web browser has to be

run each time for HARKDesigner. To solve this problem, this

paper proposes PyHARK, a Python package that allows HARK

functions to be called directly from Python scripts. This means

that common programming environments such as Jupiter Note-

book [6] and Visual Studio Code [7] can be used. In addition, it

supports both online and offline processing, so that it can be used

in different situations.

2. The Architecture for PyHARK

Fig. 1a) shows the HARK 3.4 software stack, which consists

of four layers: user program, HARK modules, harkmw, operat-

ing system. A HARK user program is called the “n” file and is

an XML file that describes the connection relationships between

HARK modules. At runtime, harkmw controls the flow of HARK

modules written in C/C++ according to the description in the “n”

file, as indicated by the arrow. Since harkmw integrates HARK

modules only with C/C++ function calls, the integration overhead

is maintained small. For PyHARK, two requirements were con-

sidered: One is to keep the overhead of HARK module integra-

tion small. This requires middleware such as harkmw. Otherwise,

all data would have to be communicated between HARK mod-

ules via the user program (Python) layer, which requires time-

consuming serialization and deserialization. Therefore, as shown

in Fig. 1b), we constructed “online PyHARK,” which inherits

the advantages of HARK’s online processing. This is achieved

1 School of Engineering, Tokyo Institute of Technology.2-12-1-W8-30,

Ookayama, Meguro, Tokyo, 152-8552, JAPAN
2 Honda Research Institute Japan Co., Ltd., 8-1, Honcho, Wako, Saitama,

351-0188, JAPAN
a) nakadai@ra.sc.e.titech.ac.jp
b) itoyama@ra.sc.e.titech.ac.jp

by wrapping the flow control function extracted from harkmw in

Python, thus reducing the overhead of module integration. The

other is the simplicity of programming. Since online PyHARK

internally includes the flow control, the user needs to write the

equivalent of an “n” file in Python. Because it is tedious to write

it every time, we constructed “offline PyHARK” by removing

harkmw, as shown in Fig. 1c). It allows users to call the HARK

modules in an offline batch processing manner without the equiv-

alent of an “n” file. Although it is not suitable for online pro-

cessing due to serialization and deserialization, it is useful for

prototyping because of simple programming.

3. Implementation examples with PyHARK

Listing 1 shows a program for short time Fourier transform us-

ing a MultiFFT node of HARK for an 8 ch acoustic signal input

by offline version of PyHARK.

Listing 1: pyhark-offline-sample.py

1 #! /usr/bin/env python

2 # -*- coding: utf-8 -*-

3

4 import hark

5 import numpy

6

7 # number of microphones

8 nch = 8

9

10 # generate input signal (8 ch, 32 bit float)

11 freqs = numpy.logspace(0, 3, endpoint=False, num=nch+1,

base=2)[:nch] * 440

12 phase = numpy.arange(16000) * freqs[:, None] / 16000 * 2

* numpy.pi

13 audio = numpy.sin(phase).astype(numpy.float32)

14

15 # framing (freme length 512, shift length 160)

16 input = numpy.lib.stride_tricks.sliding_window_view(

audio, (nch, 512))[0, ::160]

17

18 multi_fft = hark.node.MultiFFT()

19 output = multi_fft(INPUT=input)

20

21 print(output.OUTPUT)

Listing 1 is free from the consideration of incremental process-

Asia Pacific Conference on Robot IoT System Development and Platform 2023 (APRIS2023)

ⓒ 2023 Information Processing Society of Japan 65



Harkmw

L
o
c
a
liz

e

M
U

S
IC

G
H

D
S

S

M
u
ltiF

F
T

A
u
d
io

S
tre

a
m

F
ro

m
M

e
m

o
ry

S
p
e
e
c
h

R
e
c
o
g
n
itio

n

C
lie

n
t

Ubuntu 20.04/22.04

User program (hark n files)

p
ro

c
e

s
s
in

g
 flo

w

a) HARK 3.4

L
o
c
a
liz

e

M
U

S
IC

G
H

D
S

S

M
u
ltiF

F
T

A
u
d
io

S
tre

a
m

F
ro

m
M

e
m

o
ry

Ubuntu 22.04

Flow control

(Corresponding to harkmw)

pybind

User program (python3)

b) Online PyHARK

L
o
c
a
liz

e

M
U

S
IC

G
H

D
S

S

M
u
ltiF

F
T

A
u
d
io

S
tre

a
m

F
ro

m
M

e
m

o
ry

Ubuntu 22.04

pybind

User program (python3)

c) Offline PyHARK

Fig. 1 Software Stacks in HARK and PyHARK (online & offline)

ing, and the program can be written simply. Lines 10-13 generate

the input signal. Framing processing with the frame and shift

length of 512 and 160 samples is performed for the generated

signal in line 16. The framed data are then simply sent to the

next node, that is, MultiFFT on lines 18 and 19. PyHARK also

has function nodes for sound source localization and separation

called LocalizeMUSIC and GHDSS*1. By feeding the output of

MultiFFT to LocalizeMUSIC and GHDSS nodes as an input ar-

gument after their instanciation, sound source localization and

separation can be achieved.

The online version of PyHARK requires more programing than

the offline version to attain the same functionality. The online

version provides incremental processing, and thus only the frame

shift length data obtained from the microphone array are pushed

to the publisher each time. However, it is not always possible

to obtain exactly the frame length of data each time, and Au-

dioStreamFromMemory having a buffer to absorb fluctuations in

the amount of acquired data, is necessary for data management

with buffer control. In addition, the online version requires imple-

mentation of classes corresponding to HARK networks called “n”

file. The classes define the overall flow control and the process-

ing flow of a single frame. Each class is constructed by placing

functional nodes, setting the properties of each functional node,

and connecting the nodes as in the HARK n-file.

PyHARK assumes that a protype program is first develped with

the offline version to validate theoretical correctness, and the pro-

gram is seamlessly migrated to the online version for an online

demo or proof-of-concept. This reduces the load compared to

writing in MATLAB or python and then re-implementing it in

C/C++ or other online frameworks for demo purposes.

The embedded version, which will be presented as another pa-

per, is designed to be highly compatible with the online version.

This will be helpful in actual development for IoT and other em-

bedded applications.

4. Evaluation

The processing time of online PyHARK, offline PyHARK, and

HARK was evaluated through a task connecting three HARK

modules, MultiFFT (short-time Fourier transform), Localize-

*1 geometric high-order decorrelation-based source separation

Table 1 Processing Time

HARK 3.4 Online PyHARK Offline PyHARK

Mean 32.7 15.5 15.1

S.D 0.31 2.63 0.08

MUSIC (source localization with Multiple Signal Classification

(MUSIC)), and SourceTracker (source tracking). An 8 ch wav file

of 20 seconds duration that included two sound sources was used

as input. The parameter of the frequency of Eigenvalue decom-

position (EVD) for MUSIC was set to once per frame, instead of

once every 50 frames which is normally used. Ubuntu 22.04 on

VMWare Player 16 was used, with four Intel i7-12700K CPUs

and 32 GB memory allocated. For each condition, the process-

ing time was measured 10 times, and Tab. 1 shows the mean and

standard deviation. Online and offline PyHARK had almost the

same performance, and both maintained real-time processing as

they were under 20 seconds. On the other hand, HARK 3.4 could

not achieve real-time processing due to frequent EVD operations.

5. Conclusion

This paper introduced PyHARK which allows users to access

HARK functionality both online and offline from Python. We

showed that PyHARK achieved real-time processing under strict

parameter settings where HARK 3.4 did not work in real-time.

The future work includes the support of GPU, FPGA, and ARM

processors.

Acknowledgments This work was supported by KAKENHI

JP19KK0260, JP20H00475 and JP23K1116.

References

[1] “HARK,” https://hark.jp/.

[2] K. Nakadai, T. Takahashi, H. G. Okuno, H. Nakajima, Y. Hasegawa,
and H. Tsujino, “Design and implementation of robot audition system
”HARK”,” Advanced Robotics, vol. 24, pp. 739–761, 2010.

[3] K. Nakadai, H. G. Okuno, and T. Mizumoto, “Development, deploy-
ment and applications of robot audition open source software HARK,”
Journal of Robotics and Mechatronics, vol. 29, no. 1, pp. 16–25, 2017.

[4] K. Nakadai, H. G. Okuno, H. Nakajima, Y. Hasegawa, and H. Tsu-
jino, “An open source software system for robot audition hark and its
evaluation,” in 2008 IEEE RAS International Conference on Humanoid
Robots (Humanoids 2008), 2008, pp. 561–566.

[5] K. Nakadai, H. G. Okuno, T. Takahashi, K. Nakamura, T. Mizumoto,
T. Yoshida, T. Otsuka, and G. Ince, “Introduction to open source
robot audition software HARK,” in The 29th Annual Conference of the
Robotics Society of Japan (RSJ2011), 2011.

[6] “Jupyter Notebook,” https://jupyter.org/.

[7] “Visual Studio Code,” https://azure.microsoft.com/ja-jp/products/
visual-studio-code/.

Asia Pacific Conference on Robot IoT System Development and Platform 2023 (APRIS2023)

ⓒ 2023 Information Processing Society of Japan 66


