
PyHARK Acceleration: A GPU-based Approach

Lin Zirui1,a) Itoyama Katsutoshi1,2 Nakadai Kazuhiro1 TakigahiraMasayuki2

Gulzar Haris3 Eda Takeharu3 BustoMonikka Roslianna3 Amano Hideharu4

Abstract: This paper presents a GPU-based approach for PyHARK acceleration, which offers a Python interface for

HARK. One issue for PyHARK is that it needs a shorter processing time to achieve real-time for large-scale process-

ing. In this paper, we designed and implemented GPU-accelerated PyHARK that significantly reduced the processing

time.

Keywords: Robot Audition, Sound Source Localization, Sound Source Separation, GPU, Acceleration

1. Introduction

Since its release in 2008, the open-source robot audition soft-

ware HARK [1], [2] has been continuously developed. HARK

provides a programmable platform for users to build robot audi-

tion systems on demand. PyHARK, as a new feature of HARK

version 3.4 [3], provides a Python interface, which allows using

HARK functions through Python programs and utilizing com-

monly used development tools to enhance programming effi-

ciency.

This paper introduces a GPU-based approach for PyHARK ac-

celeration. We deployed bottleneck functions of PyHARK on

GPU. We elaborate on our methods and provide experiment re-

sults. In the results, for 60-channel audio data, NVIDIA A100

GPU in a server configured with AMD EPYC 7352 CPU achieved

3.6× acceleration for SSL and SSS, while Jetson AGX Xavier is

5.0×.

2. Related Work

The acceleration of HARK has been studied. Hou et al. [4] pro-

posed a method to deploy the Sound Source Localization (SSL)

module of HARK on FPGA. They partially realized the acceler-

ation of sound source localization. Similarly, Qin et al. [5] pro-

posed a method to deploy the Sound Source Separation (SSS)

module of HARK on FPGA, achieving high performance and

low power consumption computation. However, the computing

resources of FPGA are relatively limited, and only 8-channel mi-

crophone arrays are supported. According to [5], due to the lim-

itation of FPGA resources, they almost used the entire FPGA to

implement four SSS cores. DSP resources become the bottle-

neck, making it difficult to achieve large-scale processing. How-

ever, GPU usually has a more significant number of processing

units and memory capacity, enabling it to attain acceleration for

1 Tokyo Institute of Technology, Meguro, Tokyo 152–8550, Japan
2 Honda Research Institute Japan, Wakō, Saitama 351-0188, Japan
3 Nippon Telegraph and Telephone Corporation, Chiyoda, Tokyo 100–

8116, Japan
4 Keio University, Minato, Tokyo 108–0073, Japan
a) linzirui@ra.sc.e.titech.ac.jp

Table 1 Processing time of nodes and functions of PyHARK on Jetson

AGX Xavier for 60-Channel 12.5s audio data using CPU

Level Node Name Time (s) Percentage

Node AudioStreamFromWave 0.118 0.036%

Node MultiFFT 2.682 0.83%

Node LocalizeMUSIC 241.562 74.70%

Sub Function of LocalizeMUSIC

Sub Function I/O 86.396 26.72%

Sub Function AddCorrealtion 2.233 0.69%

Sub Function NormalizeCorrelation 0.046 0.014%

Sub Function MaxOfAbsValue 0.130 0.04%

Sub Function Evd 14.418 4.46%

Sub Function

Matrix Operations

CalcAveragePower 119.813 37.05%

42.254%

Sub Function Non-Martix Operations 18.565 5.74%

Node GHDSS 78.947 24.41%

Sub Function of GHDSS

Sub Function I/O 60.709 18.77%

Sub Function Matrix Operations
dUpdateSeparation

MatGHDSS
9.721 3.00%

Sub Function Non-Martix Operations 8.517 2.63%

Program 323.385 100%

large-scale processing.

3. The Bottleneck of PyHARK Processing

Table 1 shows the PyHARK program performance test result

when processing large-scale audio data with 60 channels on Jet-

son AGX Xavier with CPU. In the entire program, functions in-

volving matrix operations take much time. They are functions of

AddCorrelation, NormalizeCorrelation, MaxOfAbsValue, Evd,

CalcAveragePower, and dUpdateSeparationMatGHDSS. The to-

tal running time of these functions accounts for 45.25% of the

entire program, while the total time of I/O accounts for 45.49%.

However, I/O happens only when the program starts, not every

time frame, so its time is unrelated to data length. Therefore, we

can think of processing involving matrix operations as the perfor-

mance bottleneck of PyHARK. Optimizing this bottleneck is the

focus of this paper.

4. Proposed Method

To optimize the bottleneck caused by matrix operation func-

tions, we deploy them on NVIDIA GPU using CUDA to acceler-

ate the processing while supporting up to 60 microphones. Table

2 shows the matrix dimension in the processing, the unrolling

strategy of each function and the size and allocation of thread

blocks.

Asia Pacific Conference on Robot IoT System Development and Platform 2023 (APRIS2023)

ⓒ 2023 Information Processing Society of Japan 61

Table 2 Dimensions of Input and Output Matrices of Functions and Allocation of Threads Blocks:

frequency bins indicates the frequency range size used for SSL, channels indicates the num-

ber of microphones and height num indicate the number of directions that the microphone array

can detect. In the column of Matrix Dimension in Processing, parts inside brackets mean these

parts are unrolled, and parts outside brackets mean they are the minimum parallel unit.

Function Matrix Demension in Processing
Block Size

(block.x, block.y)
Number of Blocks

AddCorrelation (frequency bins × channels × channels) × 1 (32, 4) ((channels-1)/(block.x)+1) × ((channels-1)/(block.y)+1) × frequency bins

NormalizeCorrelation (frequency bins × channels × channels) × 1 (32, 4) ((channels-1)/(block.x)+1) × ((channels-1)/(block.y)+1) × frequency bins

MaxOfAbsValue (frequency bins × channels × channels) × 1 (32, 4) ((channels-1)/(block.x)+1) × ((channels-1)/(block.y)+1) × frequency bins

Evd (frequency bins × channels) × channels (32, 1) ((channels-1)/(block.x)+1) × channels × frequency bins

CalcAveragePower (frequency bin × channels× channels) × height num (32, 4) ((channels-1)/(block.x)+1) × ((channels-1)/(block.y)+1) × frequency bins

dUpdateSeparationMatGHDSS (frequency bins) × channels × channels (32, 1) (frequency bins + block.x - 1)/(block.x)

4.1 Unrolling Strategy

We design unrolling strategies for the functions with matrix

operations separately according to their independence of matrix

operations and allocate thread blocks to cover all parallel units.

Independence means that when performing matrix operations, the

calculation of certain elements, rows/columns or subsets of a ma-

trix does not depend on the calculation results of other elements,

rows/columns or subsets.

4.2 Block Allocation

When the number of microphones increases, the matrix dimen-

sion in processing becomes larger. Although allocating a single

thread block is the simplest way that can also reduce synchroniza-

tion overhead, it’s infeasible for scenarios with more than 1024

parallel units in the processing. This is due to the GPU’s limit of

1024 threads per block. To perform large-scale matrix processing

without exceeding the limit, we used many small thread blocks

to cover the large matrix. Table 2 shows the size and allocation

of blocks. block.x is fixed to 32, which is the number of threads

of a warp in GPU. If block.y is considered in block allocation

equations in Table 2, it is set to a factor (here is 4) of microphone

number (60) while keeping the thread count under 1024. Other-

wise, it is set to 1.

5. Evaluation Experiments

To validate our proposed approach, we conduct experiments to

measure SSL and SSS processing time on two CPUs, NVIDIA

A100 and Jetson AGX Xavier.

5.1 Experimental Settings

We conduct experiments on two distinct types of devices: a

server configured with an NVIDIA A100 GPU and AMD EPYC

7352 CPU, which represents high-performance computing envi-

ronments, and Jetson AGX Xavier, an embedded GPU device

equipped with 8-core NVIDIA Carmel ARM v8.2 CPU, repre-

sents edge computing scenarios where resources are more lim-

ited.

In experiments, we measure processing time with and without

GPU acceleration. We conduct experiments on each device with

60-channel 12.5 seconds data. Processing is conducted every 50

frames, and the length of one frame is 0.01 second.

5.2 Experimental Results

Fig. 1 shows that in both devices, the processing time of SSL

and SSS with 60-channel data has been decreased significantly.

55.289 53.767

4.246
0.396

2.409

2.604

31.437

0.742

9.608

9.669

0

20

40

60

80

100

120

CPU GPU

Processing Time (s) (A100)

147.645

158.672

9.721

1.101

8.517

5.733

136.64

11.167

17.986

16.566

0

50

100

150

200

250

300

350

CPU GPU

Processing Time (s) (Jetson AGX Xavier)

183.239

320.509

67.178

102.989

I/O SSS (Matrix Operation) SSS (Non-Matrix Operation) SSL (Matrix Operation) SSL (Non-Matrix Operation)

Fig. 1 Processing Time of SSL and SSS

A100 achieved 3.6× acceleration for SSL + SSS, while Jetson

AGX Xavier is 5.0×. If we only focus on parts with matrix op-

erations, A100 achieved 31.3× acceleration, while Jetson AGX

Xavier is 11.9×. We can also observe that even on a GPU de-

signed for edge computing, the processing time for matrix opera-

tions is significantly faster than on a high-performance CPU.

6. Conclusion

This paper proposed a GPU-based approach for PyHARK ac-

celeration. Experimental evaluations reveal that our approach ef-

fectively reduces the processing time of PyHARK on two differ-

ent scales of devices, which also shows its potential for applica-

tion in different scenarios. In future work, we plan to explore

more optimal parallelization techniques, such as dynamic block

size, and establish a unified architecture for PyHARK processing

that includes FPGAs.

Acknowledgement

This work was supported by JST CREST JPMJCR19K1.

References

[1] K. Nakadai, T. Takahashi, H. G. Okuno, H. Nakajima, Y. Hasegawa,
and H. Tsujino. Design and implementation of robot audition system
’hark’. Advanced Robotics, 24:739–761, 2010.

[2] Kazuhiro Nakadai, Hiroshi G. Okuno, and Takeshi Mizumoto. De-
velopment, deployment and applications of robot audition open source
software hark. Journal of Robotics and Mechatronics, 29(1):16–25,
2017.

[3] Kazuhiro Nakadai, Katsutoshi Itoyama, and Masayuki Takigahira. Py-
hark: Hark python package supporting online and offline processing.
SIG-Challenge, 2022(Challenge-061):04, 2022.

[4] Zhongyang Hou, Kaijie Wei, Hideharu Amano, and Kazuhiro Nakadai.
An fpga off-loading of hark sound source localization. In 2022 Tenth
International Symposium on Computing and Networking Workshops
(CANDARW), pages 236–240. IEEE, 2022.

[5] Ziquan Qin, Kaijie Wei, Hideharu Amano, and Kazuhiro Nakadai.
Low power implementation of geometric high-order decorrelation-
based source separation on an fpga board. In 2023 IEEE Symposium in
Low-Power and High-Speed Chips (COOL CHIPS), pages 1–6. IEEE,
2023.

Asia Pacific Conference on Robot IoT System Development and Platform 2023 (APRIS2023)

ⓒ 2023 Information Processing Society of Japan 62

