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Abstract: To reduce the power consumption of autonomous robots with Artificial Intelligence (AI), an edge computing method 
called multi-access edge computing (MEC) is expected to offload processing to high-performance computers in close proximity 
via high-speed 5G wireless communications. Furthermore, field programmable gate arrays (FPGAs) are anticipated to play a 
crucial role as computing resources within MEC due to their low power consumption and high-speed parallel processing 
capabilities. In this research, we introduce an offloading method employing MEC-RM, a resource management middleware 
designed for MEC, aimed at reducing response times for image recognition processing on robots. MEC-RM serves as 
middleware enabling the offloading of processing tasks to compute resources like FPGAs and GPGPUs through the transmission 
of JSON-RPC requests from edge devices to a server responsible for resource management. This paper presents the evaluation 
results of response times when employing the proposed method to offload image recognition processing to MEC's FPGA and 
communication performance in a local 5G environment. 
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1. Introduction     

The edge computing method known as Multi-access Edge 
Computing (MEC) has garnered significant attention for its 
potential to reduce power consumption in autonomous robots 
equipped with artificial intelligence [1]. MEC aims to handle 
computationally intensive tasks that are challenging to execute 
on a robot's onboard computer or are hampered by latency issues 
in the cloud. This is achieved by leveraging high-performance 
computational resources located in proximity via 5G high-speed 
wireless communication. This approach is anticipated to 
significantly decrease response times in autonomous robots by 
offloading tasks such as image recognition to high-performance 
computing resources. 

MEC utilizes accelerator-type computing resources such as 
GPGPU (General Purpose computing with Graphics Processing 
Unit) and FPGA (Field Programmable Gate Array). These 
resources can be optimized for specific applications and tasks. 
Given the power constraints in 5G wireless base stations and 
local 5G environments, there is a pressing need for high power 
efficiency and low latency. Among these accelerator-based 
computational resources, FPGAs stand out due to their ability to 
provide high-speed parallel processing with low power 
consumption [2], making them a promising solution for 
achieving higher power efficiency compared to GPUs [3]. 

In this study, we propose an offloading method that leverages 
MEC-RM (Multi-access Edge Computing-Resource Manager), 
which serves as a resource management middleware designed 
for MEC, with the aim of reducing response times for image 
recognition tasks in robots. MEC-RM is a middleware that 
facilitates task offloading from edge devices to computing 
resources like FPGAs and GPGPUs through the transmission of 
JSON-RPC requests to a resource management server. This 
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paper presents the results of our evaluation of the response times 
for offloading face detection and OpenPose-based pose 
estimation processing to MEC's FPGA using the proposed 
method, along with an assessment of the communication 
performance when offloading is carried out within a local 5G 
environment. 

2. Related Works 

The field of MEC has seen a significant body of related 
research, encompassing practical implementations, application 
evaluations, and task management for computational resources 
like FPGAs and GPGPUs. In this section, we provide a list of 
relevant studies on MEC and elaborate on their relevance to our 
research. 

2.1 Applications Utilizing MEC 
Queralta et al. introduced a distributed robot system 

leveraging MEC through 5G communication [4]. In their 
proposed approach, MECs handle autonomous operations for 
both robots and vehicles, resulting in a high level of autonomy. 
While their method incorporates various computational 
resources, including CPUs and GPUs, the utility of FPGAs as 
computational resources within MEC has not yet been 
thoroughly assessed. 

Furthermore, Inage et al. presented a method involving the 
creation of an FPGA cluster tailored for MEC applications [5]. 
In this methodology, they employed the M-KUBOS board [6], a 
medium-sized FPGA board, and achieved a remarkable power 
efficiency improvement ranging from 1.92 to 46.24 times that of 
AMD's Ryzen7 5800X CPU. This highlights the superiority of 
FPGA clusters as computational resources for MEC. However, 
it's worth noting that specific application evaluations within 
communication environments involving robots, as required by 
MEC, have not been conducted, nor have experiments taken 
place within a 5G environment. 

Our research aims to address these gaps in the existing 
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research by proposing an offloading method using MEC-RM, 
with a particular focus on FPGAs as computational resources for 
MEC. We evaluate this method by assessing its impact on the 
response times of image recognition tasks in robots and explore 
its performance within a local 5G environment. By doing so, we 
contribute valuable insights into the practical use of FPGAs 
within MEC scenarios that involve robot communication, 
bridging a crucial knowledge gap in the field. 

2.2 Computational Resource Management Methods in 
MEC 

Osaki et al. introduced the Giocci platform as a method for 
resource allocation to offload tasks from end devices to external 
computational resources within network configurations that 
incorporate MEC servers [7]. Giocci is structured into four 
layers: Client, Relay, Engine, and Store. Relay is responsible for 
transmitting data collected from the Client to the Engine, 
employing a defined algorithm for the transmission process. The 
Engine, on the other hand, handles computational processing 
tasks and is equipped with v-contact information that mirrors the 
p-contact information sent by the Client. Meanwhile, the Store 
is tasked with preserving the state of the Engine, ensuring its 
persistence. Giocci operates by forwarding data gathered from 
end devices through the Client to computing resources in the 
Engine layer via the Relay, subsequently returning the 
processing results to the Client. 

Similarly, as the MEC-RM, which is the focus of this study, 
Giocci explores resource management methods during 
offloading. However, it differentiates itself by employing the 
functional programming language Elixir for communication. In 
contrast, MEC-RM facilitates offloading of processing tasks 
through JSON-RPC via HTTP communication, rendering it a 
more versatile choice for offloading tasks. This versatility can 
be attributed to its communication protocol, which may offer 
advantages in various scenarios, including the one presented in 
our research involving robot communication within a local 5G 
environment. 

3. Purpose/Proposal 

  In this study, we present a novel approach for offloading 
image processing tasks to FPGA resources through the 
utilization of MEC-RM (Multi-access Edge Computing- 
Resource Manager), which serves as the resource management 
middleware within the MEC. The primary objective of this 
method is to significantly reduce the response time required for 
image recognition processes in autonomous robots. 

Specifically, our research focuses on offloading image 
processing tasks to a medium-sized FPGA board. To facilitate 
this offloading process, we leverage the capabilities of the 
MEC-RM middleware [9]. MEC-RM is designed to function as 
a comprehensive system for managing multiple computational 
resources utilized within the MEC ecosystem. This strategic 
deployment of MEC-RM aligns perfectly with the central 
objective of our study. 

3.1 Processing Tasks to be Offloaded to FPGA 
In this experiment, we envisioned an autonomous robot 

designed to serve as a patrol robot within nursing care facilities. 
With a diminishing working-age population due to demographic 
aging, there is a growing expectation that robots will play a vital 
role in reducing the workload in nursing care facilities. The 
functions of nursing care robots encompass autonomous 
mobility, resident interaction, and the crucial task of detecting 
falls among the elderly. Consequently, two critical processing 
tasks, namely face detection and posture estimation, were 
employed to fulfill the requirements of these functions in our 
evaluation application. 

Face detection processing was selected because it is essential 
for the robot to determine whether it has detected a person when 
greeting residents or caregivers. Robots operating in nursing 
care facilities must be capable of effective communication with 
residents and caregivers during their patrols. A fundamental 
requirement for this interaction is a greeting function, which 
necessitates the robot's ability to recognize individuals as people. 
Thus, face detection processing is a prerequisite. 

Moreover, the posture estimation process was implemented 
because it is vital for fall detection. Detecting falls among 
elderly individuals requires an estimation of the person's posture 
to determine whether they are standing, sitting, or falling. To 
meet this requirement, we implemented the posture estimation 
process on an FPGA using the OpenPose-based Vitis AI library 
[10], effectively offloading the processing from the robot to the 
FPGA. 

Both applications were implemented using the Deep-Learning 
Processing Unit (DPU) [11], a programmable engine designed 
specifically for convolutional neural networks and provided by 
AMD Xilinx. The DPU was chosen for its compatibility with a 
wide range of convolutional neural network architectures, 
including ResNet and YOLO, making it well-suited for the 
high-speed image recognition demands inherent in autonomous 
robots, which is the central objective of this research. 

Figure 1 outlines the processing flow of an application 
utilizing the DPU. Initially, a pre-trained model is loaded into 
the internal memory of the FPGA. Subsequently, image input is 

Figure 1 Processing Flow of an Application Using DPU. 
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initiated, and the image data is transferred to the input tensor. 
Following this, the inference process is executed utilizing the 
DPUs within the FPGA circuit. Once the process is complete, 
the results are retrieved from the output tensor and undergo 
post-processing tailored to the specific requirements of the 
application. 

3.2 Design of Offloading System Using MEC-RM 
Figure 2 illustrates the process flow of offloading through 

MEC-RM, while Figure 3 presents the system configuration. 
MEC-RM operates on MEC servers, where a Requester initiates 
a processing request in JSON-RPC format directed at the MEC 
server. The MEC server then forwards the processing request to 
a waiting worker for execution. Subsequently, the worker carries 
out the processing task and transmits the results back to the 
Requester via the MEC server. This approach is designed to 
enable the computational resources within MEC to efficiently 
handle the intensive processing load originally placed on the 
edge device, the Requester, achieving high-speed processing. 

To facilitate discussions concerning the response times of 
both the CPU and FPGA, we conducted the face detection and 
posture estimation processes described in Section 3.1 on a 
Raspberry Pi 4B, which serves as the onboard computer on the 
robot. Additionally, we evaluated the response time of MEC-RM 
running on a Raspberry Pi 4B also installed on the robot. Table 1 
provides an overview of the evaluation environment. The edge 
device employed was the Raspberry Pi 4B, and the FPGA 
responsible for offloading processing was the M-KUBOS board. 

Furthermore, we conducted measurements not only in a Wi-Fi 
environment but also in a local 5G environment. This approach 
allows us to assess the impact of offloading on response times 
while accounting for communication latency within the 5G 
environment, which aligns with the assumptions made by MEC. 
For the measurements conducted in the local 5G environment, 
we utilized a Laptop environment, as indicated in Table 1, for 
the sake of experimental convenience, in lieu of the Raspberry 
Pi 4B. 

3.3 Offloading the Image Recognition Process to the 
M-KUBOS board 

Figure 4 presents the system configuration for the evaluation 
application. The process begins by capturing images from the 
camera mounted on the Raspberry Pi 4B, designated as the MEC 
Requester. These images are then transmitted to a ROS (Robot 
Operating System) node responsible for communication with the 
MEC server through a ROS topic. Subsequently, processing 
requests and image data are sent to the MEC server via HTTP 
communication. The MEC server, upon receiving these requests, 
assigns a computation task to the M-KUBOS board, which 
functions as the MEC worker. 

The M-KUBOS board, upon receiving the processing request, 
executes the target application using the DPU located within the 
FPGA circuit. After completing the processing, it transmits the 
processing results back to the MEC server. Once the results are 
available on the MEC server, they are then transferred to the 
Raspberry Pi 4B. In this evaluation, we measured several time 
intervals, including the time taken by the Raspberry Pi 4B to 

upload the input data (upload), the time required for sending the 
processing request (query), the duration from sending the 
request to its completion (job), and the time taken for 
downloading the results (download). The execution time on the 
Raspberry Pi 4B is categorized as part of the job since it pertains 
to the application's execution time. 
 

Table 1 Evaluation Environment 
 RaspberryPi 4B M-KUBOS Laptop 
CPU ARM  

Cortex-A72 
(4core,1.5GHz) 

ARM 
Cortex-A53 
(1.4GHz) 

Intel  
Corei7-11800H 
(2.30GHz) 

FPGA - XCZU19EG- 
2FFVC1760 

- 

RAM 4GB 4GB 
DDR4-2400 

32GB 
DDR4-3200 
16GB x2 

OS Ubuntu 20.04 
LTS 

PYNQ v2.5 Ubuntu 22.04 
LTS 

 

 
 

 

 
Figure 3 System Configuration for Offloading Using 

MEC-RM 
 
 

Figure 2 Process Flow of Offloading Using MEC-RM 
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4. Evaluation 

In this section, we present the outcomes of offloading two 
evaluation applications to FPGAs within the evaluation 

environment detailed in the preceding section. Additionally, we 
share the results of evaluating the impact of communication 
performance within a local 5G environment. Firstly, we provide 
an overview of the results pertaining to the offloading of image 
recognition processing to FPGAs. This analysis elucidates the 
effect on response times resulting from the migration of the 
implemented application from the edge device to the FPGA 
located within the MEC. Furthermore, it assesses the efficacy of 
the proposed offloading method. Subsequently, we present the 
evaluation findings obtained within a local 5G environment, 
illustrating the value of the proposed method within the local 5G 
context assumed by the MEC. 

During the evaluation, we employed image sizes of 640x360 
pixels for the face detection process and 368x368 pixels for the 
posture estimation process. These image sizes were chosen to 
accurately represent the processing demands of the applications 
under examination. 

4.1 Offloading Image Recognition Processing to FPGA 
Using MEC-RM 

Figure 5 and Figure 6 display the results of offloading the 
face detection and posture estimation processes to the FPGA on 
the MEC, respectively, in comparison to the same processes 
executed on the Raspberry Pi 4B (Onboard) and offloaded to the 
MKUBOS board using MEC-RM (MEC offloading). 

For the face detection process, offloading resulted in a 
12.9-fold increase in response time compared to the Onboard 
execution. This increase can be attributed not only to the 
communication overhead with the MEC-server but also to the 
delays introduced by the execution time of jobs.  

In contrast, the posture estimation process exhibited a 79.5% 
reduction in response time compared to Onboard execution. 
Since the Onboard response time for the posture estimation 
process was already substantial, our method effectively reduces 
response time by offloading the computationally intensive task 
to FPGA from the edge device. 

However, it's worth noting that the response time following 
the offloading of the posture estimation process is 0.55 frames 
per second (fps), indicating that while the response time has 
been improved, the performance remains insufficient for 
autonomous robot control. To address this, a more detailed 
analysis of the time required for resource allocation and a 
review of the current data flow, where input/output data is 
transferred via the MEC-server for each request, will be 
essential to mitigate the observed delays and enhance system 
performance. Figure 6  Response Time of Offloading Pose Estimation 

Processing to FPGA Using MEC-RM 

Figure 5  Response Time of Offloading Face Detection 
Processing to FPGA Using MEC-RM 

Figure 4 System Configuration for Evaluation Application 
Using DPU 
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4.2 Comparison of Communication Performance through 
Experiments in a Local 5G Environment 

Figure 7 illustrates the network configuration of the local 5G 
environment, where the MEC-server and MKUBOS 
(MEC-worker) are connected to the DU (Distribution Unit) via 
an L3 switch. The MEC-requester, represented by the Laptop, 
establishes 5G wireless communication through the tethering 
function of a 5G-compatible smartphone connected to the local 
5G base station device. 

Figure 8 presents the results of offloading the face detection 
process, while Figure 9 displays the results of offloading the 
pose estimation process in both Wi-Fi (IEEE802.11b) and local 
5G environments, mirroring the setup in the preceding section. 
Notably, the overall response times remained consistent, but the 
response times for upload, query, and download were greater in 
the local 5G environment compared to Wi-Fi for all processes. 
This difference can be attributed to the presence of multiple 
network devices between the MEC-requester, MEC-server, and 
MEC-worker in the local 5G environment, as opposed to the 
network configuration in the Wi-Fi environment, where only a 
router is used. 

Conversely, the job time for both processes was reduced by 
approximately 50 milliseconds. This reduction is attributed to 
the fact that the MEC-server and MEC-worker are connected to 
the same L3 Switch, which likely mitigated delays compared to 
communication with the MEC-requester. 

These results collectively demonstrate that offloading to 
FPGAs using the proposed method performs as effectively as in 
a Wi-Fi environment, even within the local 5G environment 
envisioned by MEC. This finding underscores the feasibility and 
robustness of the proposed offloading approach in scenarios 
characterized by local 5G connectivity. 

5. Conclusion 

In this study, we successfully employed MEC-RM to offload 
image recognition processing tasks onto an FPGA, effectively 
managing computational resources within the MEC framework. 
Our evaluation focused on two essential image recognition 
tasks: face detection and posture estimation, both critical for the 
functionality of a care robot. The results of our study revealed a 
significant increase in response time for the face detection 
process when compared to executing it on the Raspberry Pi 4B, 

Figure 8 Response Time of Face Detection Processing in 
Local 5G Environment 

Figure 9 Response Time of Pose Estimation Processing in 
Local 5G Environment 

Figure 7 Network Configuration for Local 5G Environment 

Asia Pacific Conference on Robot IoT System Development and Platform 2023 (APRIS2023)

ⓒ 2023 Information Processing Society of Japan 26



 
 

  
 

the edge device. Specifically, the face detection process 
exhibited a 12.9-fold increase in response time when offloaded 
to the FPGA. Conversely, the response time for the posture 
estimation process saw a remarkable reduction of 79.5% when 
offloaded. This outcome underscores the efficacy of our 
proposed method in offloading computationally intensive image 
recognition tasks to an FPGA, thereby substantially reducing 
response times. Overall, our findings demonstrate that our 
approach is capable of effectively offloading image recognition 
processing, which would otherwise be too high load for an edge 
device like the Raspberry Pi 4B, to an FPGA, resulting in 
significantly improved response times. 

The same set of experiments was conducted in a local 5G 
environment to assess communication performance within this 
5G context. The results indicated that the performance in the 
local 5G environment, including latency, was comparable to that 
of the Wi-Fi environment. In both scenarios, response times for 
upload, query, and download were slightly longer in the local 
5G environment as compared to the Wi-Fi environment. 
However, there was a notable reduction of approximately 50 
milliseconds in the job time. This reduction can be attributed to 
the fact that communication delays between the MEC-server and 
MEC-worker were mitigated through the utilization of 5G 
communication technology. 

Moving forward, future tasks for this research include 
conducting a detailed measurement of the time required by 
MEC-RM for resource allocation, conducting a thorough 
analysis of potential bottlenecks, and enhancing system 
performance by reviewing the current data flow, where input 
and output data are transferred through the MEC-server for each 
request. These efforts aim to further optimize the efficiency of 
the proposed offloading method. 
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