

Offloading Image Recognition Processing to FPGA Using Resource
Manager for Multi-access Edge Computing

HAYATO MORI†1 EISUKE OKAZAKI†2 GAI NAGAHASHI†2
MIKIKO SATO†2 TAKESHI OHKAWA†3 MIDORI SUGAYA†1

Abstract: To reduce the power consumption of autonomous robots with Artificial Intelligence (AI), an edge computing method
called multi-access edge computing (MEC) is expected to offload processing to high-performance computers in close proximity
via high-speed 5G wireless communications. Furthermore, field programmable gate arrays (FPGAs) are anticipated to play a
crucial role as computing resources within MEC due to their low power consumption and high-speed parallel processing
capabilities. In this research, we introduce an offloading method employing MEC-RM, a resource management middleware
designed for MEC, aimed at reducing response times for image recognition processing on robots. MEC-RM serves as
middleware enabling the offloading of processing tasks to compute resources like FPGAs and GPGPUs through the transmission
of JSON-RPC requests from edge devices to a server responsible for resource management. This paper presents the evaluation
results of response times when employing the proposed method to offload image recognition processing to MEC's FPGA and
communication performance in a local 5G environment.

Keywords: Multi-access Edge Computing, FPGA, Autonomous Robots

1. Introduction

The edge computing method known as Multi-access Edge
Computing (MEC) has garnered significant attention for its
potential to reduce power consumption in autonomous robots
equipped with artificial intelligence [1]. MEC aims to handle
computationally intensive tasks that are challenging to execute
on a robot's onboard computer or are hampered by latency issues
in the cloud. This is achieved by leveraging high-performance
computational resources located in proximity via 5G high-speed
wireless communication. This approach is anticipated to
significantly decrease response times in autonomous robots by
offloading tasks such as image recognition to high-performance
computing resources.

MEC utilizes accelerator-type computing resources such as
GPGPU (General Purpose computing with Graphics Processing
Unit) and FPGA (Field Programmable Gate Array). These
resources can be optimized for specific applications and tasks.
Given the power constraints in 5G wireless base stations and
local 5G environments, there is a pressing need for high power
efficiency and low latency. Among these accelerator-based
computational resources, FPGAs stand out due to their ability to
provide high-speed parallel processing with low power
consumption [2], making them a promising solution for
achieving higher power efficiency compared to GPUs [3].

In this study, we propose an offloading method that leverages
MEC-RM (Multi-access Edge Computing-Resource Manager),
which serves as a resource management middleware designed
for MEC, with the aim of reducing response times for image
recognition tasks in robots. MEC-RM is a middleware that
facilitates task offloading from edge devices to computing
resources like FPGAs and GPGPUs through the transmission of
JSON-RPC requests to a resource management server. This

 †1 Shibaura Institute of Technology
 †2 Tokai University
 †3 Kumamoto University

paper presents the results of our evaluation of the response times
for offloading face detection and OpenPose-based pose
estimation processing to MEC's FPGA using the proposed
method, along with an assessment of the communication
performance when offloading is carried out within a local 5G
environment.

2. Related Works

The field of MEC has seen a significant body of related
research, encompassing practical implementations, application
evaluations, and task management for computational resources
like FPGAs and GPGPUs. In this section, we provide a list of
relevant studies on MEC and elaborate on their relevance to our
research.

2.1 Applications Utilizing MEC
Queralta et al. introduced a distributed robot system

leveraging MEC through 5G communication [4]. In their
proposed approach, MECs handle autonomous operations for
both robots and vehicles, resulting in a high level of autonomy.
While their method incorporates various computational
resources, including CPUs and GPUs, the utility of FPGAs as
computational resources within MEC has not yet been
thoroughly assessed.

Furthermore, Inage et al. presented a method involving the
creation of an FPGA cluster tailored for MEC applications [5].
In this methodology, they employed the M-KUBOS board [6], a
medium-sized FPGA board, and achieved a remarkable power
efficiency improvement ranging from 1.92 to 46.24 times that of
AMD's Ryzen7 5800X CPU. This highlights the superiority of
FPGA clusters as computational resources for MEC. However,
it's worth noting that specific application evaluations within
communication environments involving robots, as required by
MEC, have not been conducted, nor have experiments taken
place within a 5G environment.

Our research aims to address these gaps in the existing

Asia Pacific Conference on Robot IoT System Development and Platform 2023 (APRIS2023)

ⓒ 2023 Information Processing Society of Japan 22

research by proposing an offloading method using MEC-RM,
with a particular focus on FPGAs as computational resources for
MEC. We evaluate this method by assessing its impact on the
response times of image recognition tasks in robots and explore
its performance within a local 5G environment. By doing so, we
contribute valuable insights into the practical use of FPGAs
within MEC scenarios that involve robot communication,
bridging a crucial knowledge gap in the field.

2.2 Computational Resource Management Methods in
MEC

Osaki et al. introduced the Giocci platform as a method for
resource allocation to offload tasks from end devices to external
computational resources within network configurations that
incorporate MEC servers [7]. Giocci is structured into four
layers: Client, Relay, Engine, and Store. Relay is responsible for
transmitting data collected from the Client to the Engine,
employing a defined algorithm for the transmission process. The
Engine, on the other hand, handles computational processing
tasks and is equipped with v-contact information that mirrors the
p-contact information sent by the Client. Meanwhile, the Store
is tasked with preserving the state of the Engine, ensuring its
persistence. Giocci operates by forwarding data gathered from
end devices through the Client to computing resources in the
Engine layer via the Relay, subsequently returning the
processing results to the Client.

Similarly, as the MEC-RM, which is the focus of this study,
Giocci explores resource management methods during
offloading. However, it differentiates itself by employing the
functional programming language Elixir for communication. In
contrast, MEC-RM facilitates offloading of processing tasks
through JSON-RPC via HTTP communication, rendering it a
more versatile choice for offloading tasks. This versatility can
be attributed to its communication protocol, which may offer
advantages in various scenarios, including the one presented in
our research involving robot communication within a local 5G
environment.

3. Purpose/Proposal

 In this study, we present a novel approach for offloading
image processing tasks to FPGA resources through the
utilization of MEC-RM (Multi-access Edge Computing-
Resource Manager), which serves as the resource management
middleware within the MEC. The primary objective of this
method is to significantly reduce the response time required for
image recognition processes in autonomous robots.

Specifically, our research focuses on offloading image
processing tasks to a medium-sized FPGA board. To facilitate
this offloading process, we leverage the capabilities of the
MEC-RM middleware [9]. MEC-RM is designed to function as
a comprehensive system for managing multiple computational
resources utilized within the MEC ecosystem. This strategic
deployment of MEC-RM aligns perfectly with the central
objective of our study.

3.1 Processing Tasks to be Offloaded to FPGA
In this experiment, we envisioned an autonomous robot

designed to serve as a patrol robot within nursing care facilities.
With a diminishing working-age population due to demographic
aging, there is a growing expectation that robots will play a vital
role in reducing the workload in nursing care facilities. The
functions of nursing care robots encompass autonomous
mobility, resident interaction, and the crucial task of detecting
falls among the elderly. Consequently, two critical processing
tasks, namely face detection and posture estimation, were
employed to fulfill the requirements of these functions in our
evaluation application.

Face detection processing was selected because it is essential
for the robot to determine whether it has detected a person when
greeting residents or caregivers. Robots operating in nursing
care facilities must be capable of effective communication with
residents and caregivers during their patrols. A fundamental
requirement for this interaction is a greeting function, which
necessitates the robot's ability to recognize individuals as people.
Thus, face detection processing is a prerequisite.

Moreover, the posture estimation process was implemented
because it is vital for fall detection. Detecting falls among
elderly individuals requires an estimation of the person's posture
to determine whether they are standing, sitting, or falling. To
meet this requirement, we implemented the posture estimation
process on an FPGA using the OpenPose-based Vitis AI library
[10], effectively offloading the processing from the robot to the
FPGA.

Both applications were implemented using the Deep-Learning
Processing Unit (DPU) [11], a programmable engine designed
specifically for convolutional neural networks and provided by
AMD Xilinx. The DPU was chosen for its compatibility with a
wide range of convolutional neural network architectures,
including ResNet and YOLO, making it well-suited for the
high-speed image recognition demands inherent in autonomous
robots, which is the central objective of this research.

Figure 1 outlines the processing flow of an application
utilizing the DPU. Initially, a pre-trained model is loaded into
the internal memory of the FPGA. Subsequently, image input is

Figure 1 Processing Flow of an Application Using DPU.

Asia Pacific Conference on Robot IoT System Development and Platform 2023 (APRIS2023)

ⓒ 2023 Information Processing Society of Japan 23

initiated, and the image data is transferred to the input tensor.
Following this, the inference process is executed utilizing the
DPUs within the FPGA circuit. Once the process is complete,
the results are retrieved from the output tensor and undergo
post-processing tailored to the specific requirements of the
application.

3.2 Design of Offloading System Using MEC-RM
Figure 2 illustrates the process flow of offloading through

MEC-RM, while Figure 3 presents the system configuration.
MEC-RM operates on MEC servers, where a Requester initiates
a processing request in JSON-RPC format directed at the MEC
server. The MEC server then forwards the processing request to
a waiting worker for execution. Subsequently, the worker carries
out the processing task and transmits the results back to the
Requester via the MEC server. This approach is designed to
enable the computational resources within MEC to efficiently
handle the intensive processing load originally placed on the
edge device, the Requester, achieving high-speed processing.

To facilitate discussions concerning the response times of
both the CPU and FPGA, we conducted the face detection and
posture estimation processes described in Section 3.1 on a
Raspberry Pi 4B, which serves as the onboard computer on the
robot. Additionally, we evaluated the response time of MEC-RM
running on a Raspberry Pi 4B also installed on the robot. Table 1
provides an overview of the evaluation environment. The edge
device employed was the Raspberry Pi 4B, and the FPGA
responsible for offloading processing was the M-KUBOS board.

Furthermore, we conducted measurements not only in a Wi-Fi
environment but also in a local 5G environment. This approach
allows us to assess the impact of offloading on response times
while accounting for communication latency within the 5G
environment, which aligns with the assumptions made by MEC.
For the measurements conducted in the local 5G environment,
we utilized a Laptop environment, as indicated in Table 1, for
the sake of experimental convenience, in lieu of the Raspberry
Pi 4B.

3.3 Offloading the Image Recognition Process to the
M-KUBOS board

Figure 4 presents the system configuration for the evaluation
application. The process begins by capturing images from the
camera mounted on the Raspberry Pi 4B, designated as the MEC
Requester. These images are then transmitted to a ROS (Robot
Operating System) node responsible for communication with the
MEC server through a ROS topic. Subsequently, processing
requests and image data are sent to the MEC server via HTTP
communication. The MEC server, upon receiving these requests,
assigns a computation task to the M-KUBOS board, which
functions as the MEC worker.

The M-KUBOS board, upon receiving the processing request,
executes the target application using the DPU located within the
FPGA circuit. After completing the processing, it transmits the
processing results back to the MEC server. Once the results are
available on the MEC server, they are then transferred to the
Raspberry Pi 4B. In this evaluation, we measured several time
intervals, including the time taken by the Raspberry Pi 4B to

upload the input data (upload), the time required for sending the
processing request (query), the duration from sending the
request to its completion (job), and the time taken for
downloading the results (download). The execution time on the
Raspberry Pi 4B is categorized as part of the job since it pertains
to the application's execution time.

Table 1 Evaluation Environment
 RaspberryPi 4B M-KUBOS Laptop
CPU ARM

Cortex-A72
(4core,1.5GHz)

ARM
Cortex-A53
(1.4GHz)

Intel
Corei7-11800H
(2.30GHz)

FPGA - XCZU19EG-
2FFVC1760

-

RAM 4GB 4GB
DDR4-2400

32GB
DDR4-3200
16GB x2

OS Ubuntu 20.04
LTS

PYNQ v2.5 Ubuntu 22.04
LTS

Figure 3 System Configuration for Offloading Using

MEC-RM

Figure 2 Process Flow of Offloading Using MEC-RM

Asia Pacific Conference on Robot IoT System Development and Platform 2023 (APRIS2023)

ⓒ 2023 Information Processing Society of Japan 24

4. Evaluation

In this section, we present the outcomes of offloading two
evaluation applications to FPGAs within the evaluation

environment detailed in the preceding section. Additionally, we
share the results of evaluating the impact of communication
performance within a local 5G environment. Firstly, we provide
an overview of the results pertaining to the offloading of image
recognition processing to FPGAs. This analysis elucidates the
effect on response times resulting from the migration of the
implemented application from the edge device to the FPGA
located within the MEC. Furthermore, it assesses the efficacy of
the proposed offloading method. Subsequently, we present the
evaluation findings obtained within a local 5G environment,
illustrating the value of the proposed method within the local 5G
context assumed by the MEC.

During the evaluation, we employed image sizes of 640x360
pixels for the face detection process and 368x368 pixels for the
posture estimation process. These image sizes were chosen to
accurately represent the processing demands of the applications
under examination.

4.1 Offloading Image Recognition Processing to FPGA
Using MEC-RM

Figure 5 and Figure 6 display the results of offloading the
face detection and posture estimation processes to the FPGA on
the MEC, respectively, in comparison to the same processes
executed on the Raspberry Pi 4B (Onboard) and offloaded to the
MKUBOS board using MEC-RM (MEC offloading).

For the face detection process, offloading resulted in a
12.9-fold increase in response time compared to the Onboard
execution. This increase can be attributed not only to the
communication overhead with the MEC-server but also to the
delays introduced by the execution time of jobs.

In contrast, the posture estimation process exhibited a 79.5%
reduction in response time compared to Onboard execution.
Since the Onboard response time for the posture estimation
process was already substantial, our method effectively reduces
response time by offloading the computationally intensive task
to FPGA from the edge device.

However, it's worth noting that the response time following
the offloading of the posture estimation process is 0.55 frames
per second (fps), indicating that while the response time has
been improved, the performance remains insufficient for
autonomous robot control. To address this, a more detailed
analysis of the time required for resource allocation and a
review of the current data flow, where input/output data is
transferred via the MEC-server for each request, will be
essential to mitigate the observed delays and enhance system
performance. Figure 6 Response Time of Offloading Pose Estimation

Processing to FPGA Using MEC-RM

Figure 5 Response Time of Offloading Face Detection
Processing to FPGA Using MEC-RM

Figure 4 System Configuration for Evaluation Application
Using DPU

Asia Pacific Conference on Robot IoT System Development and Platform 2023 (APRIS2023)

ⓒ 2023 Information Processing Society of Japan 25

4.2 Comparison of Communication Performance through
Experiments in a Local 5G Environment

Figure 7 illustrates the network configuration of the local 5G
environment, where the MEC-server and MKUBOS
(MEC-worker) are connected to the DU (Distribution Unit) via
an L3 switch. The MEC-requester, represented by the Laptop,
establishes 5G wireless communication through the tethering
function of a 5G-compatible smartphone connected to the local
5G base station device.

Figure 8 presents the results of offloading the face detection
process, while Figure 9 displays the results of offloading the
pose estimation process in both Wi-Fi (IEEE802.11b) and local
5G environments, mirroring the setup in the preceding section.
Notably, the overall response times remained consistent, but the
response times for upload, query, and download were greater in
the local 5G environment compared to Wi-Fi for all processes.
This difference can be attributed to the presence of multiple
network devices between the MEC-requester, MEC-server, and
MEC-worker in the local 5G environment, as opposed to the
network configuration in the Wi-Fi environment, where only a
router is used.

Conversely, the job time for both processes was reduced by
approximately 50 milliseconds. This reduction is attributed to
the fact that the MEC-server and MEC-worker are connected to
the same L3 Switch, which likely mitigated delays compared to
communication with the MEC-requester.

These results collectively demonstrate that offloading to
FPGAs using the proposed method performs as effectively as in
a Wi-Fi environment, even within the local 5G environment
envisioned by MEC. This finding underscores the feasibility and
robustness of the proposed offloading approach in scenarios
characterized by local 5G connectivity.

5. Conclusion

In this study, we successfully employed MEC-RM to offload
image recognition processing tasks onto an FPGA, effectively
managing computational resources within the MEC framework.
Our evaluation focused on two essential image recognition
tasks: face detection and posture estimation, both critical for the
functionality of a care robot. The results of our study revealed a
significant increase in response time for the face detection
process when compared to executing it on the Raspberry Pi 4B,

Figure 8 Response Time of Face Detection Processing in
Local 5G Environment

Figure 9 Response Time of Pose Estimation Processing in
Local 5G Environment

Figure 7 Network Configuration for Local 5G Environment

Asia Pacific Conference on Robot IoT System Development and Platform 2023 (APRIS2023)

ⓒ 2023 Information Processing Society of Japan 26

the edge device. Specifically, the face detection process
exhibited a 12.9-fold increase in response time when offloaded
to the FPGA. Conversely, the response time for the posture
estimation process saw a remarkable reduction of 79.5% when
offloaded. This outcome underscores the efficacy of our
proposed method in offloading computationally intensive image
recognition tasks to an FPGA, thereby substantially reducing
response times. Overall, our findings demonstrate that our
approach is capable of effectively offloading image recognition
processing, which would otherwise be too high load for an edge
device like the Raspberry Pi 4B, to an FPGA, resulting in
significantly improved response times.

The same set of experiments was conducted in a local 5G
environment to assess communication performance within this
5G context. The results indicated that the performance in the
local 5G environment, including latency, was comparable to that
of the Wi-Fi environment. In both scenarios, response times for
upload, query, and download were slightly longer in the local
5G environment as compared to the Wi-Fi environment.
However, there was a notable reduction of approximately 50
milliseconds in the job time. This reduction can be attributed to
the fact that communication delays between the MEC-server and
MEC-worker were mitigated through the utilization of 5G
communication technology.

Moving forward, future tasks for this research include
conducting a detailed measurement of the time required by
MEC-RM for resource allocation, conducting a thorough
analysis of potential bottlenecks, and enhancing system
performance by reviewing the current data flow, where input
and output data are transferred through the MEC-server for each
request. These efforts aim to further optimize the efficiency of
the proposed offloading method.

Reference
[1] Kekki, S., Featherstone, W., Fang, Y., Kuure, P., Li, A., Ranjan,

A., ... & Scarpina, S. (2018). MEC in 5G networks. ETSI white
paper, 28(2018), 1-28.

[2] K. Iizuka, H. Takagi, A. Kamei, K. Hironaka and H. Amano, "Power
Analysis of Directly-connected FPGA Clusters," 2022 IEEE
Symposium in Low-Power and High-Speed Chips (COOL CHIPS),
Tokyo, Japan, 2022, pp. 1-6, doi: 10.1109/COOLCHIPS54332.
2022.9772675.

[3] BIOOKAGHAZADEH, Saman; ZHAO, Ming; REN, Fengbo. Are
fpgas suitable for edge computing? In: USENIX Workshop on Hot
Topics in Edge Computing (HotEdge 18). 2018.

[4] J. P. Queralta, L. Qingqing, Z. Zou and T. Westerlund, "Enhancing
Autonomy with Blockchain and Multi-Access Edge Computing in
Distributed Robotic Systems," 2020 Fifth International Conference
on Fog and Mobile Edge Computing (FMEC), Paris, France, 2020,
pp. 180-187, doi: 10.1109/FMEC49853.2020.9144809.

[5] T. Inage et al., "M-KUBOS/PYNQ Cluster for multi-access edge
computing," 2021 Ninth International Symposium on Computing
and Networking (CANDAR), Matsue, Japan, 2021, pp. 95-101,
doi: 10.1109/CANDAR53791.2021.00020.

[6] PALTEK, “FPGA computing platform M-KUBOS,” https://www.
paltek.co.jp/design/original/m-kubos/ (accessed 2023-9-17).

[7] D. Sasaki, et al. "Resource allocation method among MEC servers
in resource transparent platform for 5G communication network."
Research Report Internet and Operational Technology (IOT)

2023.3 (2023): 1-8. (In Japanese).
[8] Nakagawa, I., et al.: Dripcast – Server-less Java Programming

Framework for Billions of IoT Devices. In Proc. of COMPSAC, pp.
186–191 (2014).

[9] LI YANZHI, Midori Sugaya. (2022). Proposal of a resource
management system for multi-FPGA/GPGPU mixed environment.
Research report High Performance Computing (HPC), 2022(2),
1-10. (In Japanese).

[10] AMD Xilinx: Vitis AI, https://github.com/Xilinx/Vitis-AI,
(accessed 2023-9-17).

[11] AMD Xilinx: DPU IP Details and System Integration,
https://xilinx.github.io/Vitis-AI/3.5/html/docs/workflow-system-int
egration.html (accessed 2023-9-17).

 Acknowledgments This work was supported by JST, CREST,
JPMJCR19K1 and JTOWER. Inc.

Asia Pacific Conference on Robot IoT System Development and Platform 2023 (APRIS2023)

ⓒ 2023 Information Processing Society of Japan 27

