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Abstract: A low power coprocessor in the microcontroller helps to save total power consumption. While the
main processor is in a sleep state, the low power coprocessor can process the inputs and maintain responsiveness.
However, inter-processor communication and processor power state management make development more
complicated. In this paper, we address this problem by introducing a mechanism to switch a running processor
to the functional reactive programming (FRP) language XStorm, which has an abstraction mechanism for
modeling stateful behaviors. The proposed mechanism allows us to choose which processor to run in each
state. Therefore, the switching of a running processor can be represented as a state transition. Our compiler
can absorb differences in processor architectures and automatically generate programs for inter-processor
communication and processor state management. As a result, developers can more easily describe system
with coprocessors. We describe the proposed mechanism and report an evaluation on the power consumption
and time of state transitions.
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1. Introduction

Some microcontrollers have low power coprocessors with

limited functionality and performance in addition to the main

processor. For example, ESP32-S3 have the RISC-V Ultra

Low Power Coprocessor (ULP coprocessor) [4]. The ULP

coprocessor does not support SPI and PWM outputs, and

has a limited number of GPIOs, but can use analog-to-digital

converters and I2C. Such a microcontoller reduces the power

consumption while maintaining responsiveness by processing

inputs in the ULP coprocessor while the main processor is

in the sleep-state. However, inter-processor communication

and processor power state management make development

more complicated.

We extend XStorm [9], a functional reactive programming

language for small-scale embedded systems with an abstrac-

tion mechanism for modeling stateful behaviors. XStorm can

switch the relations between time-varying values depending

on the state. This allows to describe embedded systems with

stateful behavior by XStorm.

In this paper, we introduce a mechanism to choose which

processor to run in each state. We implemented this mech-

anism for XStorm, and targeted ESP32-S3 with the ULP

coprocessor. We show a simplified Theremin example us-

ing the proposed mechanism. We also evaluated the power

consumption and the overheads of state transitions.
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The rest of this paper is organized as follows. The following

section describes XStorm, an FRP language that supports

the description of state-dependent behavior, using a moti-

vating example (Theremin). After describing the low-power

coprocessor technologies used in this work in Section 3, the

proposed language mechanism and its implementation are

described in Sections 4 and 5, respectively. The motivating

example is used again in these sections. Then, Sections 6 and

7 discuss the evaluation of power consumption and execution

time, respectively. Section 8 discusses related work, and

Section 9 concludes the paper.

2. XStorm

XStorm [9] is a functional reactive programming language

designed for resource-constrained devices such as microcon-

trollers. It is based on Emfrp [15] and provides an abstraction

mechanism for modeling stateful behaviors. This section first

describes the concepts of FRP, then the language overview

and implementation of XStorm.

2.1 Functional Reactive Programming

A reactive system is a computational system that con-

tinuously reacts to external inputs. Embedded systems are

typical examples of reactive systems. Functional Reactive

Programming (FRP) is a programming paradigm that de-

scribes a reactive system in terms of time-varying values

(aka signals), which abstract values that change over time

(e.g., sensor readings) [1]. By describing relations between

time-varying values using FRP, we can avoid using techniques

such as polling and callbacks often used in programming em-

Asia Pacific Conference on Robot IoT System Development and Platform 2023 (APRIS2023)

ⓒ 2023 Information Processing Society of Japan 1



Listing 1: A Simplified Theremin in XStorm

1 func next_volume_mode(v) = (v % 5) + 1
2 switchmodule Theremin {
3 in dist(0) : Int, btn(False) : Bool
4 out frequency : Int, volume : Int,
5 stateLed : Bool # For Eval. 1
6 shared btn_released(False) : Bool,
7 volume_mode(1) : Int
8 init On
9

10 shared node btn_released = not(btn) && btn@last
11 shared node volume_mode =
12 if btn_released
13 then next_volume_mode(volume_mode@last)
14 else volume_mode@last
15 state On {
16 node dist_avg(0) =
17 (dist * 6 + dist_avg@last * 4) / 10
18 out node frequency = dist_avg
19 out node volume = volume_mode * 20
20 out node stateLed = True
21 switch: if dist_avg>=1500 then Off else Retain
22 }
23 state Off {
24 out node frequency = 0
25 out node volume = 0
26 out node stateLed = False
27 switch: if dist < 1500 then On else Retain
28 }
29 }

bedded systems and recognized as obstacles to readability,

maintainability, and evolution.

FRP was initially proposed as an interactive program con-

struction method for Haskell [2]. Since then, FRP has proven

helpful in developing embedded systems, starting with its

application to robot control [13]. Several FRP languages

targeting resource-constrained embedded systems have also

been proposed (e.g., [6], [12], [15]).

2.2 Language Overview

Listing 1 is an example application in XStorm that imple-

ments a simplified Theremin*1 that equips a distance sensor

and a button. When a performer moves her/his hand closer

to the distance sensor, the frequency of the instrument’s

sound changes according to the distance between the hand

and the sensor. It stops the sound if the hand is outside the

measurable range of the sensor. The volume of the sound

can be adjusted to five levels with the button.

The module Theremin (lines 2–29) is a switch module (an

XStorm program component that defines stateful reactive

behaviors) with two states. In lines 3–5, the module declares

two inputs (dist and btn) and three outputs (frequency,

volume and stateLed) as time-varying values: dist represents

the distance sensor measurement, btn represents the button

status, frequency controls the sound frequency, volume con-

trols the output volume, and stateLed controls an LED for

Evaluation 1 (Section 6). Their initial values are written

within parentheses. For example, dist is initialized as 0.

In XStorm, as in Emfrp, time-varying values are called

nodes and are classified into input, output, and intermediate

*1 Theremin is an electronic musical instrument that controls its
sound without physical contact by detecting the position and
movement of the performer’s hands with antennas.

nodes. The values of input nodes are determined by external

devices (e.g., sensors), while the values of other nodes are

specified by node definitions expressed using the keyword

node. We say that node A depends on node B if B appears

(without @last, discussed below) on the right-hand side of

= in the definition of A. Note that no input nodes depend

on any other nodes. The nodes in the module should form a

directed acyclic graph (DAG) whose edges are dependencies

between nodes. XStorm’s runtime system updates the values

of the nodes as follows. It first determines the values of

the nodes with input degree 0 and then updates each node

once along the DAG up to the nodes with output degree

0. This update process is called an iteration. The runtime

system realizes the reactive behavior defined in the module

by repeating the iteration. In other words, the execution of

a module means the updating of the nodes.

Many embedded systems have state-dependent behaviors.

Therefore, their design often uses state transition models such

as Statecharts [5]. If we try to represent state-dependent be-

haviors in Emfrp, time-varying values representing states will

appear everywhere, significantly reducing program readabil-

ity, extensibility, and maintainability. The most significant

feature of XStorm is that it provides a language mechanism

for describing state-dependent behaviors.

In XStorm, keyword state introduces a state and defines

a state block. Theremin module has two States (On and Off)

and corresponding state blocks (lines 15–22 and lines 23–28).

With the introduction of states, intermediate nodes are

further classified into state local and shared nodes. A defini-

tion of an intermediate node in a state block defines a state

local node that is updated while the switch module is in the

state.

For example, the node dist_avg which represents the mov-

ing average of dist, is updated only while the module is in

the state On. The time-varying values frequency and volume

are depending on the inputs while the state is On, and are 0

while the state is Off. The keyword switch (lines 21 and 27)

defines a state transition by specifying the next state. Retain

represents staying in the current state. For example, line 21

means that if dist_avg is greater than 1500, the state of the

switch module will become Off; otherwise, it will remain On.

This transition means that the performer’s hand is outside

the measurable range of the distance sensor. Shared nodes

should be declared in the switch module header separately

(lines 6–7) from their definitions outside the state blocks

(lines 10–14). They are updated regardless of the state of

the module.

The expression btn@last in the definition of the shared

node btn_released (line 10) refers to the last value of the

node btn. This means the value in the previous iteration.

In this example, btn_released becomes True when a falling

edge of btn is detected.

XStorm is a statically typed language. In addition to

Int and Bool, there are floating point types and tuples, and

abstract data types can also be defined. However, recursive

data types (e.g., lists and trees) are not allowed. Recur-
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Listing 2: Generated Functions for Listing 1 (abridged)

1 extern void input(int * dist, int * btn);
2 extern void output(int * frequency, int * volume,
3 int * stateLed);
4
5 static void activate(void) {
6 INITIALIZE;
7 while(1) {
8 input(&(mem->dist), &(mem->btn));
9 ITERATION ;

10 output(&(mem->frequency), &(mem->volume),
11 &(mem->stateLed));
12 }
13 }
14
15 // An example of the entry point.
16 void main(void) {
17 // Setup peripherals.
18 setup_peripherals();
19 activate();
20 }

sive functions are also prohibited, and there are no loop

statements.

2.3 Generated Code

The XStorm compiler generates the function activate

(Listing 2). This function initializes constants (INITIAL-

IZE), and then it inputs, do an iteration (ITERATION ),

and outputs repeatedly. The extern functions input and

output are called for inputs and outputs of the main mod-

ule. A developer complete these extern functions by using

platform-specific APIs.

2.4 Memory Management

Since XStorm prohibits recursive functions and recursive

data types, it is easier to estimate the maximum memory

consumption. The generated C program allocates tuples,

abstract data types and some structs for modules on arrays

declared as global variables. The length of the array is de-

termined according to the estimated memory consumption.

Therefore, a XStorm program does not allocate the memory

dynamically at the runtime. It avoids running out of memory

and can run on memory-constrained devices such as the ULP

coprocessors.

3. Low Power Coprocessor

Inter-processor communication and processor power state

management are essential to use the low power coprocessor.

This section describes about the RISC-V ULP coprocessor

of ESP32-S3, because there are various implementations and

limitations of low power coprocessors.

Since the ULP coprocessor has less available memory space

than the main processor, the main processor must trans-

fer data that the ULP coprocessor reads and writes to the

memory space that is accessible to the ULP coprocessor.

ESP32-S3 has several memories, including 512KiB Internal

RAM and 8KiB RTC SLOW Memory. The main processor

uses mainly the 512KiB Internal RAM, which is invisible to

the ULP coprocessor. Data read and written by the ULP

coprocessor must be copied to the 8KiB RTC SLOW Memory.

Listing 3: Theremin using the Proposed Mechanism

1 switchmodule Theremin {
2 in dist(0) : Int, btn(False) : Bool
3 out frequency : Int, volume : Int,
4 stateLed : Bool # For Eval. 1
5 shared btn_released(False) : Bool,
6 volume_mode(1) : Int
7 init On
8
9 shared node btn_released = not(btn) && btn@last

10 shared node volume_mode =
11 if btn_released
12 then next_volume_mode(volume_mode@last)
13 else volume_mode@last
14 state On on main {
15 node dist_avg(0) =
16 (dist * 6 + dist_avg@last * 4) / 10
17 out node frequency = dist_avg
18 out node volume = volume_mode * 20
19 out node stateLed = True
20 switch: if dist_avg>=1500 then Off else Retain
21 }
22 state Off on ulp {
23 out node frequency = 0
24 out node volume = 0
25 out node stateLed = False
26 switch: if dist < 1500 then On else Retain
27 }
28 }

The RTC SLOW Memory is slower than the Internal RAM

because of its slower clock. In addition, the start address

of the RTC SLOW Memory is different between the ULP

coprocessor and the main processor. In order to transfer data

containing pointers, addresses must be properly translated

prior to data transfer.

The main processor power states can be classified into two

states: active and sleep. ESP32-S3 have two sleep states:

Light-sleep and Deep-sleep. Light-sleep retains the contents

of the Internal RAM and the program counter of the main

processor, but Deep-sleep does not. Thus Deep-sleep saves

more power than Light-sleep. According to the data sheet [3],

the typical power consumption is 8 µA versus 240 µA. They

are much lower than 13.2mA of the main processor, which

runs at 40MHz (minimum frequency).

4. Proposed Mechanism

The proposed mechanism provides a way to choose which

processor to run on for each state of the switch module. The

program switches processors to run exclusively depending on

the state.

Listing 3 is a Theremin program that uses the ULP co-

processor by the proposed mechanism and is derived from

Listing 1. The switch module Theremin has two states: On

running on the main processor and Off running on the low

power coprocessor. There are few changes in the XStorm

program. on modifier are added in the state definitions.

States with on main run on the main processor and states

with on ulp run on the low power coprocessor. This mod-

ifier is effective only on the toplevel module. XStorm can

instantiate modules within a module (a submodule [9], [15]),

but this modifiers on the submodules are ignored.
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Listing 4: Generated Functions for the Main Processor

(abridged)

1 extern void input(int * dist, int * btn);
2 extern void output(int * frequency, int * volume,
3 int * stateLed);
4 extern void into_sleep(void);
5 extern void into_active(void);
6
7 static void switch_processor(void) {
8 if(!SWITCH REQUIRED ) return;
9 // beginning of (1)

10 DATA TRANSFER MAIN TO ULP ;
11 // end of (1) & beginning of (2)
12 into_sleep(); // The main processor halts.
13 // end of (3) & beginning of (4)
14 DATA TRANSFER ULP TO MAIN ;
15 // end of (4)
16 into_active();
17 }
18 static void activate_main(void) {
19 while(1) {
20 input(&(mem->dist), &(mem->btn));
21 ITERATION ;
22 output(&(mem->frequency), &(mem->volume),
23 &(mem->stataeLed));
24 switch_processor();
25 }
26 }
27 static void activate(void) {
28 INITIALIZE ;
29 activate_main();
30 }
31 static void activate_deep(void) {
32 // end of (3) & beginning of (4)
33 DATA TRANSFER ULP TO MAIN ;
34 // end of (4)
35 into_active();
36 activate_main();
37 }
38
39 // An example of the entry point.
40 void main(void) {
41 // Enables to wake up from the interruption
42 // by the ULP coprocessor.
43 esp_sleep_enable_ulp_wakeup();
44 // Peripherals (e.g. LED PWM Controller)
45 // are reset after Deep-sleep.
46 setup_peripherals();
47 // Check whether the main processor have been
48 // woke up by the ULP coprocessor.
49 if(esp_sleep_get_wakeup_cause()
50 == ESP_SLEEP_WAKEUP_ULP) {
51 activate_deep();
52 } else {
53 // Load the ULP program.
54 ulp_riscv_load_binary(
55 bin_start, (bin_end-bin_start));
56 activate();
57 }
58 }

5. Implementation

There are some changes in the generated programs to

target ESP32-S3. This section describes these changes.

5.1 Generated Program

The XStorm compiler implementing the proposed mech-

anism generates two C/C++ source code files: one for the

main processor (Listing 4) and one for the ULP coprocessor

(Listing 5). In each file, the ITERATION for the other

processor is eliminated. For example, the C source code file

for the ULP coprocessor does not contain the ITERATION

under the state running on the main processor (On state).

Listing 5: Generated Functions for the ULP Coprocessor

(abridged)

1 extern void input(int * dist, int * btn);
2 extern void output(int * frequency, int * volume,
3 int * stateLed);
4 extern void into_active(void);
5
6 static void switch_processor(void) {
7 if(!SWITCH REQUIRED ) return;
8 // beginning of (3)
9 into_active(); // The ULP coprocessor terminates.

10 }
11 static void activate(void) {
12 while(1) {
13 input(&(mem->dist), &(mem->btn));
14 ITERATION ;
15 output(&(mem->frequency), &(mem->volume),
16 &(mem->stateLed));
17 switch_processor();
18 }
19 }
20 // An example of the entry point.
21 void main(void) {
22 // end of (2)
23 activate();
24 }

In Section 2.3, we mentioned that the developer must fill

in the functions input and output. In addition to these

functions for the main processor, the developer also must

write the functions input and output for the ULP coproces-

sor. In ESP32-S3, the ULP coprocessor has a different I/O

API than the main processor.

In addition to input and output, the extern functions

into_sleep and into_active have been added. These func-

tions are called when the running processor is switched. The

developer must fill in into_sleep for only the main proces-

sors, and into_active for the both. For example, into_sleep

starts the ULP coprocessor and make self (the main proces-

sor) and some peripherals sleep. into_active for the ULP

coprocessor wakes the main processor, and that for the main

processor wakes some peripherals.

After each iteration, the function swtich_processor is

called. It checks whether the running processor must

be switched (SWITCH REQUIRED). When the run-

ning processor is switched from the main processor to

the ULP coprocessor, the function copies the necessary

data from the main processor to the ULP coprocessor

(DATA TRANSFER MAIN TO ULP in Listing 4). Then

calling into_active wakes the ULP coprocessor and halts

the main processor. After the running processor must be the

main processor from the ULP coprocessor, switch_processor

of the ULP coprocessor (Listing 5) only calls the func-

tion into_active that wakes the main processor and

halts the ULP coprocessor. After waking the main pro-

cessor, the following procedure is different in the sleep

state. If the main processor was in Light-sleep, the pro-

gram counter remains, so switch_processor of the main

processor (Listing 4) is reentered. It copies the neces-

sary data from the main processor to the ULP coproces-

sor (DATA TRANSFER ULP TO MAIN ), and then calls

into_active to wake some peripherals. If the main processor
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was in Deep-sleep, it executes from the entry point. The

function esp_sleep_get_wakeup_cause (an ESP32-S3 API)

returns ESP_SLEEP_WAKEUP_ULP, then activate_deep is called

(lines 47–51 in Listing 4). activate_deep copies the neces-

sary data (DATA TRANSFER ULP TO MAIN ), and then

starts iterations.

5.2 Data Transfer between Processors

In the Theremin example, the values of the shared nodes

(btn_released and volume_mode) must be copied when the

state transitions from On to Off. These values are stored in

the struct of the switch module, and its instance are allocated

in the array explained in Section 2.4. In ESP32-S3, the ULP

coprocessor does not have access to the Internal RAM, as

explained in Section 3. Therefore, in order to reference these

(e.g., volume_mode@last) from the ULP coprocessor after a

state transition, the main processor must copy these values

into the RTC SLOW Memory.

In our implementation, we defined arrays on the RTC

SLOW Memory for the ULP coprocessor as well as the

main processor, as explained in Section 2.4. In state transi-

tions, reachable values from the struct of the switch module

Theremin are copied. The program traces the current and

previous values of each node from the main module. Primi-

tive types, such as numbers and boolean values, are copied

straightforward. For types referenced through pointers, such

as tuples, abstract data types and submodule instances, the

instance allocated on the array as a global variable is copied,

and the address of the pointer is translated because the start

address of the RTC SLOW Memory is different between the

main processor and the ULP coprocessor. Address trans-

lation is defined as a preprocessor macro (#define) or a C

function. The developer can adapt to the different memory

mappings (e.g., future ESP32s).

6. Evaluation 1 : Power Consumption

Using the ULP coprocessor, it is expected to reduce the

power consumption. We measured power consumption using

the Theremin example in three configurations:

• No-Sleep. Uses only the main processor, no sleep state.

• Light-sleep.

• Deep-sleep.

Table 1 shows the evaluation environment. The evaluation

board ESP32-S3-DevKitC-1 has an always-on LED and an

addressable RGB LED. The always-on LED indicates that

the board is powered on even if the main processor is in the

sleep states. On version 1.0 boards, the addressable RGB

LEDmay be lit due to noise. We powered on this board not to

turn on this RGB LED carefully. All resources are available:

https://github.com/psg-titech/apris-2023-experiments

6.1 Method

Fig. 1 illustrates the evaluation method. We used the

Theremin program in Listing 3. The inputs dist and btn

were generated virtually on the function xsinput. dist was

input a triangle wave ranging from 0 to 3000. btn was always

Table 1: The Evaluation Environment
Name Revision

Evaluation board ESP32-S3-DevKitC-1 N8, v1.0
SDK for ESP32-S3 ESP-IDF v5.1.0

Ammeter (Eval. 1)
Nordic Power
Profiler Kit 2

FPGA (Eval. 2) ZYBO Z7-20 Vivado 2023.1.1

ESP32-S3-Devkit-C-1

xsinput (C Function)
Triangle wave

PPK2
3V3Ammeter

3.3V 
Source

switchmodule
ThereminAlways-on LED

dist

Constant Value
btnFalse

LED PWM 
Controller

A

xsoutput
(C Function)

open
frequency

volume

stateSigGPIO Input

Fig. 1: The Configuration for Evaluation 1

False. The outputs freq and volume were outputs to the

LED PWM Controller. The LED PWM Controller output a

PWM signal to an GPIO pin, which was open. In the No-

sleep configuration, the LED PWM Controller was disabled

while the state is Off, like the sleep states.

To measure power consumption, we used Nordic Power

Profiler Kit 2 (PPK2). The sample rate was 105 samples per

second, and we sampled for 5 minutes. PPK2 supports GPIO

inputs. The output stateSig was connected to the GPIO

inputs of PPK2 to distinguish the state. We also used PPK2

as a voltage source (Source Meter Mode). We connected the

3V3 pin in ESP32-S3-DevKitC and the power output is 3.3 V.

The ESP32-S3 operated at 160 MHz. We used the functions

usleep on the main processor and ulp_riscv_delay_cycles

on the ULP coprocessor to wait for 33 µs between iterations.

We disabled all logger outputs because the logger causes

slower boot. We set following parameters by the menuconfig:

• CONFIG_BOOTLOADER_LOG_LEVEL_NONE=y

• CONFIG_BOOTLOADER_LOG_LEVEL=0

6.2 Results and Discussion

Fig. 2 shows an extracted result and Table 2 shows maxi-

mum, minimum, and average current. The states displayed

at the bottom of the figures come from the output stateSig.

The typical current consumption ranges from 27.6mA to

54.6mA [3]. The No-sleep results in Table 2b also range from

29.91mA to 50.36mA. In Table 2a, in each configuration, the

results are similar in the state On. The typical current con-

sumption in Light-sleep and Deep-sleep are 240 µA and 8 µA,

respectively [3]. Looking at the minimum on the state Off in

Table 2b, the difference between Light-sleep and Deep-sleep

is 0.26mA. This result is close to the data sheet.

In the state Off, the current consumption of Light-sleep
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and Deep-sleep are much lower than on No-sleep. The aver-

ages of Light-sleep and Deep-sleep are 12 and 25 times lower

than No-sleep in Table 2a, respectively. However, spikes are

also observed in Light-sleep and Deep-sleep. In Table 2b,

their maximum values are higher than No-sleep. As can be

seen in Fig. 2, the spikes occur during state transitions of

Light-sleep and Deep-sleep. The spikes in Deep-sleep is much

longer than in Light-sleep. This is because the same process

as the normal boot process runs during the state transitions

of Deep-sleep. Therefore, the highest consumption is ob-

served in the state Off and Deep-sleep in Table 2b because

the signal stateSig is changed after the boot process. In this

evaluation, the state is switched frequently. As a result, the

average of Deep-sleep is worse than Light-sleep in Table 2b.

There was a significant difference in power consumption.

We observed that using a low power coprocessor in FRP

reduces power consumption. However, power consumption

during state transitions is high if the sleep states are used.

We have to choose Light-sleep or Deep-sleep while taking the

frequency of the state transition into consideration.

Table 2: Maximum, Minimum, and Average Current Con-

sumption (mA)

(a) Between the 10th and 90th Percentiles

No-sleep Light-sleep Deep-sleep
State On Off On Off On Off

Minimum 31.52 31.52 31.52 2.57 31.27 1.21
Maximum 32.28 32.28 32.38 2.68 32.08 1.35
Average 31.89 31.89 31.94 2.63 31.65 1.27

(b) All Results

No-sleep Light-sleep Deep-sleep
State On Off On Off On Off

Minimum 30.00 29.91 28.67 0.95 29.62 0.69
Maximum 50.36 48.33 67.01 67.01 59.26 76.08
Average 31.95 31.95 32.01 2.65 31.72 4.41

7. Evaluation 2: Elapsed Time During

the State Transition

We observed that state transitions with switching the run-

ning processor take longer than without switching, because

there are overheads: processor power state transition and

data transfer. We measured the overheads in state tran-

sitions with switching using the Theremin example in two

configurations:

• Light-sleep

• Deep-sleep

Table 1 shows the evaluation environment.

7.1 Method

Fig. 3 illustrates the evaluation method. We used the

Theremin program in Listing 3. The inputs and outputs of

the switchmodule Theremin were same as Section 6.1. We

disabled all logger outputs as explained in Section 6.1. The

ESP32-S3 operated at 160 MHz.

We measured time by using an FPGA. The FPGA and the
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Fig. 2: Current Consumption

evaluation board are connected through GPIO. The evalua-

tion board always outputs a gray code. The output changes

at the beginning and the end of the overheads being mea-

sured. The FPGA measures the time that the value is being

output. The FPGA operated at 50MHz.

The overheads measured in this evaluation are:

( 1 ) Data transfer from the main processor to the ULP co-

processor

( 2 ) The ULP coprocessor wake-up

Asia Pacific Conference on Robot IoT System Development and Platform 2023 (APRIS2023)

ⓒ 2023 Information Processing Society of Japan 6



( 3 ) The main processor wake-up

( 4 ) Data transfer from the ULP coprocessor to the main

processor

Each overhead is showed in Listing 4 and 5. These overheads

do not occur if a state transition does not require switching

the running processor. We sampled 1000 samples for each

overhead.

ESP32-S3-Devkit-C-1

FPGA: ZYBO Z7-20 ( Sample Rate: 50[MHz] )

GPIOs (via RTC GPIO Controller)

Gray code:
000 → 001 → 011 → 010 → ...

Records time that the value is being output.

Sample 1 Sample 2 Sample 3 ...

000 10000 10010 9990

001 5000 5001 ?

︙

Fig. 3: The Configuration for Evaluation 2

7.2 Result and Discussion

Table 3 shows the average wall-clock time for the over-

heads. Comparing two configurations, every overheads in

Deep-sleep is worse than Light-sleep. Due to the complete

boot process, the wake-up time of the main processor from

the Deep-sleep state is more than 135 times the wake-up

time from the Light-sleep state. In this example, the iter-

ations are executed every 33ms, but the wake-up time of

the main processor from the Deep-sleep state takes about

80ms. Thus, timings of two iterations are not met. By

the way, it is unclear why data transfer and wake-up time

of the ULP coprocessor in Deep-sleep take longer than in

Light-sleep. The state of the interconnect may be different

between Light-sleep and Deep-sleep.

When comparing data transfer and processor wake-up

time, the processor wake-ups take more than 10 times the

data transfers. Since the RTC SLOW Memory is limited, we

can consider that data transfer does not take much longer

than processor wake-up time.

Table 3: Average Wall-Clock Time of the Overheads (µs)
(1) (2) (3) (4)

Light-sleep 9.63 164.00 579.29 14.64
Deep-sleep 13.91 179.75 79669.60 39.43

8. Related Work

8.1 FRP Languages for Embedded Systems

Several FRP languages for embedded systems are pro-

posed, e.g., Hailstorm [14] and Juniper [6]. Hailstorm is an

instance of Arrowised FRP languages. Thus, the relations

between time-varying values are described by combining sig-

nal functions. The language provides switch# combinator

for modeling stateful behaviors. It takes two arguments: the

first is a signal function whose output value is used to switch

between the various signal functions, and the second is a

function that returns a signal functions depending on the

result of the first argument. The second argument function

should be a combination of the if expressions.

Juniper combines several FRP concepts. Time-varying

values in Juniper are first class citizens. This means that

stateful behaviors can be described by switching the time-

varying values with the if or match expression. Listing 6*2

shows an example of stateful behavior in Juniper.

In these language, it is difficult to discover an if expres-

sion eligible to switch the running processor because the

whole program must be analyzed. In contrast, our imple-

mentation only seeks the state declaration in the toplevel

switchmodule. To use a low power coprocessor in these lan-

guages, a new primitive for switching the running processor

or such a complicated analyzer is required.

Listing 6: A Stateful Behavior in Juniper

1 fun main() : unit = (
2 setup();
3 while true do (
4 let inputSig = ...
5 let mainSig =
6 Signal:foldP(fn (inputs, state) ->
7 case state of
8 | On => ( ... ) // state On { ... }
9 | Off => ( ... ) // state Off { ... }

10 end
11 end, inputSig)
12 Signal:sink(fn state -> ... end, mainSig)
13 ) end
14 )

XCios [16] is derived from XStorm and has a mechanism

for dynamically switching peripherals. In each state of a

switchmodule, XCios allows to describe what state each I/O

device is in. The extern functions input and output are

prepared for each I/O time-varying variable. In addition to

input and output, XCios automatically calls extern functions

called hook functions when each I/O time-varying variable

changes its state. The hook function manages the power

mode of the peripheral to save the power consumption of the

peripheral device. It is not difficult to combine XCios with

the proposed mechanism in this paper.

8.2 Related Technologies

8.2.1 Other Microcontrollers

Our current implementation only supports the ESP32-S3,

but can be easily adapted to other microcontollers satisfying:

• A main processor and coprocessors are communicating

via memory mapped I/O.

• A main processor can enter the sleep states by any C

function. It pauses during the coprocessor is working,

and then it restarts from the entry point or resumes

from the last position before sleeping.

*2 A similar example is NeopixelRing.jun on the Juniper repos-
itory with the commit hash da2725428d1.
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• Memory spaces accessible from coprocessors are acces-

sible from the main processor before the coprocessors

wake up, or the coprocessors can wait for data transfer

(e.g., by using spinlocks).

For example, the PSoC6 series [7] and the LPC43xx se-

ries [10] have a Cortex-M4 (CM4) as a main processor and

a Cortex-M0(+) as a low power coprocessor, and i.MX RT

1160 [11] has a Cortex-M7 (CM7) and a CM4. They have

shared memories for communication between processors and

the memory map for each processor is the same. All of the

memories are visible from both processors. Such a micro-

controller can be applied the proposed mechanism straight-

forward. Because of the same memory map, no address

translation is required. However, despite of the same mem-

ory map, most microcontrollers does not allow to access to

part of memories in the sleep state.

8.2.1.1 PSoC6 Series

Both processors use the shared memory as a main memory

and the entire memory is visible even if it is in the sleep

state. Thus, our implementation can be easily adapted to

the PSoC6 series by disabling data transfer.

8.2.1.2 LPC43xx Series

When the main processor is in the sleep state, the accessi-

ble range of the memory map is limited. Therefore, shared

data must be copied to the accessible range before the main

processor halts. Moreover, in this case, it is expected that

allocating shared data within the accessible range beforehand

allows to reduce data transfer size.

8.2.1.3 i.MX RT 1160

There are TCMs, memories associated with the Cortex

processor. The CM7 TCM is visible from the CM4 during

the CM7 is on. The CM4 TCM is visible from the CM7

even if the CM4 is sleeping, but power consumption can be

reduced by turning off the CM4 TCM. In addition, access

from the CM7 to the CM4 TCM is slower than the CM7

TCM because they are not directly connected.

8.2.2 OpenAMP

OpenAMP (Open Asymmetric Multi-Processing) [8] sup-

ports life cycle management (remoteproc) and inter-processor

communication (RPMsg) capabilities for handling remote

compute resources. It provides a library for Linux, RTOS

(Real-Time Operating System) and bare-metal. With

RPMsg, packets are sent by a send-like function and are

received by a callback. Our implementation may be adapted

to RPMsg APIs (not straightforward).

9. Conclusion

We proposed a new mechanism allowing to use low power

coprocessors with XStorm, a FRP language. This mechanism

allows to write the running processor in each state. Managing

the processor power state makes easier by this mechanism,

thanks for an abstraction mechanism for modeling stateful

behaviors in XStorm. We implemented a compiler and eval-

uated a Theremin example with ESP32-S3. Our compiler

can automatically generate a data transfer program between

processors. In our evaluation, it shows that the proposed

mechanism reduces power consumption. However, the over-

head of state transitions with switching the running processor

is also observed. We need to consider these overhead when

choose whether we use the sleep state or not.

As explained in 8.2.1.2, allocating the shared data within

a range accessible from both of a main and a low power

processor beforehand is a future work. It is expected to re-

duce data transfer size and latency when using LPC43xx-like

microcontrollers.
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