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Abstract This paper presents a reconfigurable functional unit (RFU) for an adaptive dynamic extensible processor. The
processor can tune its extended instructions to the target applications, after chip-fabrication, which brings about more
flexibility. The custom instructions (Cls) are generated deploying the hot basic blocks during the training mode. In the normal
mode, CIs are executed on the RFU. A quantitative approach was used for designing the RFU. The RFU is a matrix of
functional units with 8 inputs and 6 outputs. Performance is enhanced up to 1.5 using the proposed RFU for 22 applications of
Mibench. The size of configuration memory has been reduced by 40% through making the RFU partially reconfigurable,
finding subsets of CIs and merging small Cls into one configuration. This processor needs no extra opcodes for Cls, new

compiler, source code modification and recompilation.
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1. Introduction

ASICs, general purpose processors (GPPs), ASIPs, and
extensible processors are various approaches for
designing embedded systems. Although ASICs have
higher performance and lower power consumption, they
are not flexible and have an expensive and time
consuming design process. For GPPs, although
availability of tools, programmability, and ability to
rapidly deploy them in embedded systems are good
reasons for their common use, usually they do not offer
the necessary performance. ASIPs are more flexible than
ASICs and have more potential to meet the challenging
high-performance demands of embedded applications,
compared to GPPs. However, the synthesis of ASIPs
traditionally involved the generation of a complete ISA
for the targeted application which is too expensive and
has long design turnaround time.

Another method for providing enhanced performance is
application-specific instruction set extension. In this
method, the critical portions of an application’s dataflow
graph (DFG) can be accelerated by mapping them to
custom functional units. Instruction set extension
improves performance and also maintains a degree of
system programmability, which enables them to be
utilized with more flexibility. The main problem with this
method is that there are significant non-recurring
engineering costs associated with their implementation.

In our approach, an Adaptive dynaMic extensiBIE
processoR (AMBER) is presented in which the Cls are
adapted to the target applications and generated after
chip-fabrication, fully transparently and automatically.

This approach reduces the design time and cost drastically.

Our Cls are generated by exploiting the HBBs. An HBB is
a basic block that is executed more than a given threshold.
A basic block is a sequence of instructions that terminates
in a control instruction. We propose an RFU
architecture to support a wide range of generated Cls. Our
8-input, 6-output RFU is a coarse grain accelerator based
on a matrix of functional units (FUs). It is tightly coupled
with the base processor. In this method, there is no need
to add extra opcodes for Cls, develop a new compiler,
change the source code and recompile it.

In Section 2, we highlight some related work. The
general overview of AMBER is described in Section 3.
Section 4 discusses our quantitative approach for
designing RFU and the proposed architectures. Section
5 covers the integration of RFU and the base processor.
Section 6 overviews the configuration memory.
Performance evaluation results can be found in Section 7
and finally the paper is closed by conclusions and future
work.

2. Related Work

PRISC[1], Chimaera[2], OneChip[3], XiRisc[4] and
MOLEN [5] are some instances of tightly coupled
integration of a GPP with fine-grain programmable
hardware and ADRES [6] is a sample system with
coarse-grain hardware. Fine-grain accelerators allow for
very flexible computations, but there are several
drawbacks to using them. They have long latency and
reconfiguration time. Furthermore, they need a large
amount of memory for storing configuration bits. To
overcome the computational inefficiency  and
reconfiguration latency, most of them deal with very large



subgraphs. This work differs in that we focus on
acceleration at finer granularity.

For loosely coupled systems like Garp[7] and
MorphoSys [8], there is an overhead for transferring data
between the base processor and the coprocessor. For
tightly coupled designs, data transferring takes less time
but adding RFUs usually demands for more register file
read/write ports. Chimaera adds a shadow register to
solve this issue. In our case, we share the input/output
resources between them.

All of these designs require a new programming model,
a new compiler, new opcodes for new instructions, source
code modification or recompilation. In our approach, we
do not encounter these issues. The user just runs the
applications on the base processor, and then, generation
of custom instructions and handling their execution are
done transparently and automatically.

Adaptive dynamic optimization systems such as
Turboscalar [9], rePlay [10], PARROT [11], and Warp
Processors [12] select frequently executed regions of the
code through dynamic profiling, optimize the selected
regions and cache/rewrite the optimized version for future
occurrences. The execution of the optimized version is
carried on by extra tasks sharing the main processor
and/or by extra hardware. To overcome the overhead of
dynamic optimization, we have defined two modes for our
processor.

The similar design to ours has been proposed by Clark
[13]. However, we use different methods for profiling and
generating, mapping and handling execution of CIs. Our
RFU is not integrated like other functional units. It shares
the available read/write ports. By applying some
modifications in the routing resources and locations of
inputs, our RFU can handle more CIs. In addition we tried
to go for more details such as structure and size for the
configuration memory of our RFU.

3. General Overview of AMBER Architecture

By adaptive we mean that the processor can tune its
extended instructions to the target applications. Moreover,
we claim it is dynamic, because instruction set extension
is done based on the profiling of dynamic code. AMBER
has been designed and developed by integrating three
main components to the base processor, namely profiler,
RFU and sequencer. The base processor is a 4-issue
in-order RISC processor that supports MIPS instruction
set.

Profiling of running applications is done by the profiler
through monitoring the program counter (PC). In every
clock cycle, the profiler compares the current value and
the previous value of the PC. If the difference of these
two values is not equal to the instruction length, a taken
branch or jump has occurred. The profiler has a table with
a counter for each entry (start address of basic blocks) to
keep the execution frequency of basic blocks. In the case
of a taken branch or a jump, the profiler table is checked.
If the target address (current PC) is in the table, the
corresponding counter is incremented; otherwise it is
added as a new entry and its counter is initialized to one.
Using the profiler table, start addresses of HBBs can be
obtained.

RFU is a matrix of functional units (FUs) plus a

configuration memory. According to the size of data in
the processors, a matrix of FUs seems efficient and
reasonable enough for accelerating dataflow subgraphs as
ClIs. Each CI updates the PC after its execution finishes,
considering original sequence execution, so that the
processor can continue from the correct address.

The sequencer mainly determines the microcode
execution sequence by selecting between the RFU and the
processor functional unit. It has a table in which the start
addresses of CIs in the object code are specified. The
table of the sequencer is initialized according to the
locations of the Cls in the object code in training mode.
The sequencer monitors the PC and compares it to its
table entries. When it detects that a CI is going to be
executed, it switches from processor functional unit to the
RFU, waits for specified clock cycles and lets the RFU
finish the execution of the CI and then again switches to
the processor functional unit.

AMBER has two operational modes: training mode and
normal mode (Fig. 1). In the training mode, applications
are run on the base processor and profiled. Then, the start
addresses of HBBs are detected. Using these addresses,
HBBs are read from the object code. CI generation has
been limited to one HBB. During CI generation, some
changes may be applied to the object code and therefore,
some parts of the object code may be rewritten.
Generating configuration data for RFU and initializing
sequencer table is done in this mode. When these
processes are done, the processor switches to the normal
mode.

Training Mode

Fig. 1.

AMBER operational modes

Training mode can be done online or offline. In the
case of online training, profiler needs some hardware. In
this case, all processes (detecting HBBs, generating Cls,
etc) are performed on the base processor. For offline
training, a simulator (e.g. Simplescalar [16]) is needed.
All processes are executed on the host machine.

In the normal mode, using the RFU, its configuration
data, sequencer and its table, the Cls are executed on the
RFU. For more details on AMBER, refer to [1].



4. RFU Architecture: A Quantitative Approach

In this section, we explain our tool flow. Also, CI
generation method and mapping algorithm are described
and finally, the proposed architectures for RFU are
presented.

4.1. Tool Chain for Quantitative Approach

We followed a quantitative approach by applying
the tool chain of Fig. 2 for designing RFU, using 22
applications of Mibench [15]. Simplescalar was
utilized as our simulator. The simulator was
modified to generate a trace of taken branches and
jumps as an input for the profiler for detecting start
addresses of HBBs [1]. For each HBB start address,
its corresponding basic block is read from the object
code. Reading the HBBs terminates when
encountering a control instructions. Then DFG is
generated for each HBB and passed to the CI
generator tool. The mapping tool receives the
optimized CIs and maps them on RFU. The results of
mapping tool guide us to RFU architecture.

Base Processor
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Fig. 2. Tool Chain

Our CI generator, mapping tool and RFU were
developed in two phases. In the first phase, we assumed
some primary constraints for both CIs and RFU. CIs were
generated and mapped on RFU considering these
constraints. We concluded a proper architecture for RFU,
by analyzing the feedbacks resulted from mapping. After
finalizing the RFU, an integrated temporal partitioning

and mapping framework was developed for generating ClIs.

The details of the framework are out of the scope of this
paper.

Primary constraints for generating Cls are: a)
supporting only fixed-point instructions excluding
multiply, divide and load and b) including at most one
store and at most one control instructions. Multiply and
divide were excluded due to their low execution
frequency and large area required for hardware
implementation and /oads were ignored because of the
cache misses and long memory access time, which makes
the execution latency unpredictable.

As the primary constrains for the RFU, a matrix of FUs
which can support only fixed-point instructions of the
base processor was assumed without any limitations on
the number of inputs, outputs (I/0) and FUs. The output

of each FU was supposed to be used by the neighbors in
the same row and by all other FUs in the lower level
rows.

Our CI generation algorithm does not need to be
complicated for two reasons. First, the length of HBBs is
usually between 10 to 40 instructions, and so they are not
too big to need a complicated algorithm. Secondly, in the
online training mode, the CI generator is going to be
executed on the base processor.

Our CI generator receives the DFG of each HBB as an
input and then looks for the longest sequence of
instructions that can be executed on the RFU. After
checking the flow dependence and anti-dependence, more
instructions are added to the head and tail of the detected
instruction sequence by moving executable instructions in
the object code. Executable instructions are those
instructions that can be executed by the RFU. It is also
checked whether or not the areas where the instructions
are going to be moved, are the target of branch
instructions. For those parts of the object code where
instructions are moved, the object code is rewritten, if
these conditions are met. In this phase we try to make CI
as large as possible. Sometimes HBBs are so large that
more than one CI may be extracted. This process is
repeated until all nodes are covered or no CI longer than
five can be generated. Our CI generator ignores Cls with
less than five instructions.

Mapping is the appropriate positioning of DFG nodes
on FUs. Assigning instructions of CI or DFG nodes to
FUs is done based on the priority of nodes. The nodes
assigned lower value of ASAP (As Soon As Possible) [2]
have to be executed earlier. ASAP represents the
execution order of nodes according to their dependencies.
After calculating ASAP of each node, a preliminary
mapping of nodes is done, starting with lower level nodes
to higher level nodes. Using this simple algorithm does
not guarantee the minimum connection length between
nodes.

To overcome this issue, after the initial mapping, nodes
are moved to other FUs to achieve shorter connections.
We restrict the moving scope of nodes to its connections
bounding box. Slack [2] and position of parents and
descents of each node determine the boundary of moving
to other FUs. Slack of each node represents its criticality.
The nodes with zero slack value are on a critical path and
can not be moved to other FUs. A node with slack value
equal to 1 can only move to one row above or below. This
node has to be located under or at the same row of its
parents and above or at the same row of its descents. By
moving nodes to unoccupied locations at the scope of its
bounding box, appropriate locations in terms of minimum
connections criterion can be found.

4.2. Proposed Architectures for RFU

In this paper, mapping rate is defined as the percentage
of generated CIs that can be mapped on the RFU for 22
applications of Mibench. We have considered the
execution frequency of CIs for measuring the mapping
rate as well. All 22 applications were executed till
completion. Because execution time varies for each
application, for a fair comparison, a weight was assumed
for each so that the production of execution time and



weight is equal for all.

To determine the proper numbers for RFU inputs and
outputs, we mapped our generated CIs on the RFU
without considering any constraints. The curves in Fig. 3
show the mapping rate for different numbers of inputs and
outputs.
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Fig. 3. Mapping rate for different numbers of I/0

According to the results, eight and six are good
candidates for the number of inputs and outputs,
respectively. The graph becomes almost flat after these
numbers.” To find the appropriate number for FUs, we
similarly measured the mapping rate for various numbers
of FUs. The measurement was done for two cases. Once it
was done for ClIs that meet our I/0 constraints obtained
from last experiments, and in the second case, we did not
assume any limitation. The two graphs in Fig. 4 show that
16 is a good candidate. The curve marked by triangles,
which shows the mapping rate without considering any
constraints, illustrates that most of the remaining Cls are
so large that even 35 FUs are not enough for executing
them. The curve dotted by square symbols, depicts that by
16 FUs 99.84% of Cls that meet the I/O constraints can be
handled by RFU.

We continued similar procedure to specify the width
and depth of RFU. Experimental results specify that 6 and
5 are appropriate for width and depth, respectively. By
adding the width and depth constraints to previous
constraints, the mapping rate will reduce from 94.74% to
93.51%.

However, we have 16 FUs that should be laid in a 6x5
matrix. Measuring the mapping rate for different numbers
of FUs in each row shows that 6, 4, 3, 2 and 1 for first to
fifth rows, respectively, are proper candidates. By adding

these new constraints, the mapping rate reaches to 92.28%.

However, in this architecture, we have assumed that the
inputs of the RFU can be accessed by any FU directly and
there are direct connections from the output of each row
to the input of other lower rows. Moreover, each FU can
have inputs (outputs) from (to) the left and right FUs.

To make the architecture more realistic, we assumed
that all inputs are applied only to the first row. We also
limited the number of connections. The outputs of each
row can be used only by all FUs in the subsequent row.
All connections to and from neighboring FUs were
deleted. In this architecture, for transferring input data to
rows below the first row, or transferring the output of one
row to the input of FUs in a non-subsequent row, move
instructions should be inserted on the intermediate FUs.
With these limitations, the mapping rate decreases to
77.53%.
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Fig. 4. Mapping rate for different number of FUs

To improve the mapping rate, we examined many
different configurations and structures. According to the
mapping rate results, we reached to the following
architecture depicted in Fig. 5.

7972999
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Fig. 5. Optimized RFU architecture

In this architecture, to facilitate data accessing for FUs
and reduce the inserted move instructions (which occupy
FUs), four other longer connections were added to the
base connections. Base connections connect the output of
each row to the inputs of subsequent rows. These four
longer connections connects row 1 to rows 3, 4 and 5 and
row 2 to row 4. We also distributed the input ports among
rows. 7, 2, 2, 2, 1 are the number of inputs for the first to
fifth rows, respectively that can facilitate access to inputs
directly for all rows. The number of inputs for the RFU is
8 and these 14 inputs are generated by replicating the
main 8 inputs. In the third and fourth rows, three -
uni-directional connections to the neighboring FUs, were
added to support CIs with critical path longer than 5.

Experiments show that each FU of RFU does not need
to support all the operations. We defined three types of
operations: logical operations (type 1), add/sub/compare
(type 2) and shift operations (type 3). Distribution and the
number of operation of each type for each row are given
in Table 1. Considering all the constraints for the second
proposed architecture, the mapping rate increases to
90.48% which is almost 13% better than that for the first
architecture. Each configuration needs 308 bits for
control signals and 204 bits for immediate values.



Table 1. Number of required functions in each row
Row No. Typel | Type2 | Type3
1 2 6 4
2 3 3 2
3 1 3 2
4 1 2 1
5 1 1 0

5. Integrating RFU with the Base Processor

Fig. 6 depicts how the RFU is connected to the base
processor. The [/O ports of the processor functional units
have been shared by the RFU. Using this technique, there
is no need to add more read/write ports to the register
file.

Fig. 6.

Integrating RFU with the base processor

In a conventional processor, the signals for reading
registers are generated by the decode stage. In this design,
two signals control reading the register file, one comes
from decode stage and the other from configuration bits.
Fig. 6 shows four outputs for RFU whereas we had
mentioned that RFU had 6 outputs. To support RFU with
six outputs without adding write port to the register file,
we added two registers to the RFU. When the custom
instruction has more than four outputs, extra write values
are registered. Four of them are written in one cycle and
the remaining ones in the next cycle. Therefore, for Cls
with more than four outputs, the execution takes one more
cycle.

6. Configuration Memory

Two techniques were used to reduce the size of
configuration memory: similarity detection and merging
of CIs. Two Cls can be similar according to their: nodes
(FUs) plus connections, inputs, outputs and immediates.
In most cases, the configuration bits related to FUs and
connections for Cls are the same but the inputs, outputs
or immediates are different. Moreover, detection of FUs
and connections similarity is done in a different manner.
Two FUs and connections similarity types were defined:
complete and subset similarities. Two Cls are completely
similar if their functionality of nodes (FUs) and
connections are the same and they have subset similarity
if one of the CIs is completely similar to a subset of
another CI considering the nodes and connections
similarities.

To support similarity detection, 512 bits of CI

configuration data was divided into four parts; 155 bits
for the selecting operations of FUs plus selectors of
muxes (connections) (P;), 92 bits for selecting inputs (P,),
61 bits for outputs (P;) and 204 bits for immediate values
(P4). Two Cls have similar inputs, outputs or immediates
if their P,, P; and P4 are exactly the same, respectively.
By generating one configuration bits for similar Py, P;, P;
and P, the size of configuration memory is decreased.

Experiments show that the percentage of unused space
of RFU for 22 applications is almost 63% without
considering the similarity of CIs. According to this
observation, we tried to reduce unused space of RFU by
merging small Cls of each application.

Fig. 7 includes the first 7 attempted applications with
the largest number of Cls. For each application, the
leftmost bar in Fig. 7 shows the number of initial
generated ClIs and the second to fifth specify the number
of required P,, P,, P; and P4, respectively, after detecting
similarities and merging Cls. By this method, the size of
configuration memory was decreased from 7.4 KB to 4.4
KB which means 40% improvement.

I @Number of P4

Fig. 7. Number of P, P,, P; and P, compared to initial

Cls

7. Performance Evaluation

Simplescalar was used as our simulator framework. As
for the base processor, we assumed a 4-issue in-order
RISC processor supporting MIPS instruction set with
32KB L1 data cache (1 cycle hit), 32KB L1 instruction
cache (1 cycle hit), IMB unified L2 cache (6 cycle hit),
64 RUU size and 64 fetch queue size. We assumed a
variable delay for our RFU which depends on the length
of the critical path after mapping a CI on the RFU. We
developed the VHDL code of RFU and synthesized the
code with Synopsys tools using Hitachi 0.18p technology.
The area of RFU is 1.1534 mm?. Table 2 shows the delay
of RFU for CI with different length.

Figure 8 shows the obtained speedup for four base
processors with different clock frequencies (200, 300, 400
and 500 MHZ). For programs like lame and patricia in
which 53% and 22% of dynamic instructions are floating
point and 26% and 22% are load, respectively, there was
not much opportunity for generating effective Cls. Other
applications like gsort and adpcm have small HBBs so
that either they were rejected or small performance
improvement could be obtained using them. In susan and
gsm, multiplication covered 13% and 7% of dynamic
instructions. For applications with higher speedup such as
sha, stringsearch, rijndael and gsm, Cls covered high
percentage of dynamic instructions namely are 41%, 51%,



45% and 32%, respectively.

Table 2. RFU Delay for CI with different length
CI Length[RFU Delay (ns)

1 1.38
2.28
3.12
4.89
6.47
7.57
8.65
9.66

| Q| ]| L] |l W N

8. Conclusions and Future Work

Using a quantitative approach, we proposed an RFU for
an adaptive dynamic extensible processor. The RFU has 8
inputs and six outputs with 16 FUs. By adding few longer
connections between rows and facilitating the input
access we could improve the mapping rate by 13%.
Furthermore, the configuration memory was reduced by
making the RFU partially reconfigurable, generating one
configuration for similar/subset CIs and merging small
ClIs. The performance improvement was up to 25% and
the average speedup was 1.10. As expected, when the
dynamic instructions are covered more by Cls, the
speedup is higher. To increase the speedup for more
applications, CIs and the RFU can be extended to support
multiplications and floating point instructions. Another
solution, which is our next step, is relaxing CIs over
HBBs. :
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