BLE パケットの観測に基づく IoT 機器の把握支援システム

小林 佑太郎 † 谷口 義明 ‡,§ † 近畿大学大学院総合理工学研究科 ‡ 近畿大学情報学部 § 近畿大学情報学研究所

1 はじめに

我々の実生活の中では BLE (Bluetooth Low Energy) と呼ばれる近距離無線技術を搭載した IoT 機器 (以下、 BLE 機器) が広く活用されている。しかし、研究室、家 庭などの小規模組織では、IoT 機器が管理されておら ず、十分なセキュリティ対策が講じられていない場合 がある。そのような機器はサイバー攻撃を受けるだけ でなく、他の機器に危害を与える可能性がある。また、 BLE 機器を勝手に取り付け、取得した位置情報を悪用 するような事例もある [1]。管理されていない BLE 機器 や周囲の不審な BLE 機器を把握するためには、まず、 身の回りの BLE 機器を把握することが必要である。

本稿では、BLEパケットの観測に基づく IoT 機器の 把握支援システムを開発した。本システムはノート PC 上で動作するソフトウェアであり、Wi-Fi 機器の把握 システム [2] を発展させたものである。本システムで は、周囲にある BLE 機器の一覧表示、取得したアドレ スと実際の BLE 機器の対応付け、BLE 機器の位置を 探すナビゲーションが可能である。

2 IoT 機器把握支援システム

図1に本システムの概要、図2に本システムで表示さ れるGUIを示す。本システムはBLE機器から発信され るBLEパケットを利用した3つの機能を持つ。BLE機 器の一覧をGUI上に表示するアドレス一覧表示機能、 ユーザが位置を把握しているBLE機器と一覧に表示さ れているBLE機器のアドレスとの対応づけを行うため の表示アドレス対応づけ補助機能、ユーザがBLE機器 の場所を把握していない場合にユーザを対象のBLE機 器の方向に誘導するためのナビゲーション機能である。 以降、各機能を説明する。

2.1 BLE 機器のアドレス一覧表示機能

本機能はユーザが GUI 上の List Display ボタンを押 下することで動作する。ボタン押下後、ノート PC 上 で受信可能な BLE アドバタイズパケットを取得、解析 し、ノート PC の周辺にある BLE 機器のアドレス等情 報一覧を GUI 上に自動的に表示する。本機能を使用す ることにより、周辺 BLE 機器のアドレス一覧の把握が 可能である。

図 1: 提案システムの概要

図 2: 提案システムの GUI

2.2 表示アドレス対応付け補助機能

本機能は表示されたアドレスとユーザが位置を把握 している BLE 機器の対応付けを補助する機能である。 本機能では、ノート PC が BLE 機器に近づく場合に BLE 機器からブロードキャストされる BLE アドバタ イズパケットの RSSI が増加し、遠ざかる場合にはそ の RSSI が減少する傾向を利用する。

本機能を利用する場合、まず、ユーザは GUI 上の Associate ボタンを押下する。この時、一覧に表示さ れているエントリのチェックボックス全てにチェックが 入る。その後、ユーザは Approch ボタンを押下して対 応付けを行いたい BLE 機器に対して近づき、その後、 Leave ボタンを押下して対象の BLE 機器から離れる。 システムは、Approach ボタンが押下された後に RSSI が増大し、Leave ボタンが押下された後に RSSI が減 少したエントリを、該当の機器のエントリの候補とし、 チェックボックスのチェックを残す。このことにより、表 示されたアドレスとユーザが位置を把握している BLE 機器の対応付けを支援できる。

2.3 ナビゲーション機能

本機能はシステムに表示されるアドレスを持つ BLE 機器の設置されている場所にユーザを誘導する機能で ある。本機能では、一覧に表示されているアドレスの

IoT Device Grasp System Based on Observation of BLE Packets

[†]Yutaro Kobayashi ‡,§Yoshiaki Taniguchi

[†]Graduate School of Science and Engineering, Kindai University

[‡]Faculty of Informatics, Kindai University

[§]Cyber Informatics Research Institute, Kindai University

図 3: 実験環境

機器とノート PC の間にユーザ割り込むと RSSI が減 少することを利用する。

本機能を利用する場合、まず、ユーザは、一覧の中か ら設置場所を検索したい BLE 機器のエントリのチェッ クボックスを押下し、GUI 上の Navigation ボタンを押 下する。続いて、ユーザはその場でシステムの動作す るノート PCを持ちゆっくりと回転する。その後、シス テムは、対象のアドレスを持つ BLE パケットの RSSI が減少している方向と反対側の方向に対象の BLE 機 器があると推定し、ユーザを推定した方向へ誘導する。 ユーザが対象の BLE 機器を発見した場合、ユーザは表 示アドレス対応付け機能を利用して、アドレスと対象 の BLE 機器を関連付ける。

3 基礎評価

本稿で検討した機能の実現可能性を示すための基礎 評価実験を行なった。実験を行った部屋のレイアウト と BLE 機器の設置場所、計測位置を図 3 に示す。実 験では、本システムを動作させる PC (Raspberry Pi 4 Model B、Linux raspberrypi 5.15.61) と MAC アドレ スまたは製品情報を把握している BLE 機器 (以下、対 象 BLE 機器) を 6 台使用した。

3.1 表示アドレス対応付け補助機能の基礎評価

まず、表示アドレス対応付け補助機能の実現可能性 を評価するための実験を行った。この実験では、図3 の1~9の各位置に実験用 PC を設置し、3分間 BLE パケットを観測した。

図4は、各計測位置における各対象 BLE 機器からの RSSI の平均値を示したものである。図3と図4で表す ように、BLE 機器が直視環境、非直視環境のいずれの 場合においても、計測位置が対象 BLE 機器に最も近い 場合に RSSI が最も高くなることがわかる。

3.2 ナビゲーション機能の基礎評価

次に、ナビゲーション機能の実現可能性を評価する 実験を行った。この実験では、図3の計測位置5でユー ザが実験用 PC を持ち、A~D の4方向それぞれを向 いて、3分間 BLE パケットを観測した。

図5は、計測位置5で方向A~Dを向いた時の各対 象BLE機器からのRSSIの平均値を示している。直視

図 4: 表示アドレス対応付け補助機能の評価実験結果

図 5: ナビゲーション機能の評価実験結果

環境、非直視環境のいずれの場合でも、ユーザが対象 BLE 機器の反対方向を向いている場合に RSSI が最も 低くなることがわかる。

4 おわりに

本稿では、BLEパケットの観測に基づくBLEを搭載 した IoT 機器の把握支援システムの提案と開発を行っ た。また、本システムの表示アドレス対応付け補助機 能、ナビゲーション機能の実現可能性を示すための基 礎評価を行った。

謝辞

本研究の一部は科学研究費(19K11934)の助成を受けたものである。ここに記して謝意を表す。

参考文献

- Barua, A., Al Alamin, M. A., Hossain, M. S. and Hossain, E.: Security and Privacy Threats for Bluetooth Low Energy in IoT and Wearable Devices: A Comprehensive Survey, *IEEE Open Jour*nal of the Communications Society, Vol. 3, pp. 251–281 (2022).
- [2] 江川悠斗,谷口義明,井口信和:無線フレームの観測に基づく IoT 機器の把握支援システム,情報処理学会論文誌, Vol. 62, pp. 1298–1306 (2021).