7S-04

遺伝的アルゴリズム・深層生成モデルを用いた打音の生成 および打音探査の定量的評価精度の向上

岡本 誠史†	新保 弘‡	佐野 俊介 [‡]	溝渕 利明‡	野嶋 潤一郎 [§]	尾関 智子†
	東海大学†	法政大学‡	J-POWER 設計ニ		

1. はじめに

コンクリート構造物の内部の劣化状態を評価する方法 に打音探査がある.これは、コンクリートをハンマーで 叩いたときの音により, コンクリート内部に欠陥がない か調査する方法である.新保ら[1]などにより、打音の特 性を定量化する試みは行われているが、打音は劣化状態 だけでなく構造物の状態や環境にも影響を受け、採取す るサイトによって打音の性質にも差異が生じることから, 汎化性能のある特徴抽出が難しい.

本研究では、機械学習による判別モデルの精度を向上 させるため、多サイト間における打音の性質の差異を考 慮する多目的遺伝的アルゴリズムを用いた打音波形のス カログラムを得る際の最適化方法と、深層生成モデルに よるデータ拡張方法を提案する.

打音データセットと特徴抽出 2.

特徴抽出方法の最適化、生成モデルの作成、生成デー タによるデータ拡張の評価を行うにあたり、新保ら[1]に よる、塩害劣化した鉄筋コンクリート製桟橋(劣化度大) の打音のデータセットIと、名古屋大学のN2U-BRIDGE [2] (さまざまな劣化度)の打音のデータセットN,地方自治体 管理の沿岸部小規模橋梁[3]で採取した打音のデータセッ ト S を用いる. なお, 全てのデータはサンプリング周波 数 44,100Hz で 5ms の波形である.

多目的遺伝的アルゴリズムの NSGA-Ⅲ[4]を用いて打音 波形をスカログラム変換する際の最適なパラメータを探 索する. 最適化においては、健全(N)・欠陥(D)のニュー ラルネットワーク内の潜在表現およびスカログラム画像 の見た目の差異がより大きくなるようにする. 最適化に 用いる健全・欠陥それぞれのデータ数n_N, n_Dは, データ セット I・N・D 全てから健全・欠陥それぞれ 20 個ランダ ムに抽出し, n_N , $n_D = 60$ とする.

従属変数xは 4 種類とする. x1, x2はそれぞれ Complex Morlet Wavelet \mathcal{O} bandwidth \mathcal{E} center frequency $\mathcal{E} \cup$, スカログラム変換の基底関数を式(1)のように定義する.

$$\psi(t) = \frac{1}{\sqrt{\pi x_1}} e^{-\frac{t^2}{x_1}} e^{j2\pi x_2 t} \qquad \dots (1)$$

また, x₃, x₄はスカログラム変換後の周波数方向におけ るクロップ範囲のパラメータであり、x3はクロップ範囲 の下限周波数fminである. x4は式(2)に示すクロップ範囲 の上限周波数fmaxを決定する.

$$f_{max} = f_{min} + x_4(f_n - f_{min}) \qquad \cdots (2)$$

† Tokai University, ‡ Hosei University, § J-Power Design Co., Ltd.

式(3)に示すように、目的関数Fを4種類定義する.

$$F(x) = \begin{cases} F_1(x) = \frac{1}{n_N} \sum_{i=1}^{n_N} \left[\left\| V\{|W|_{(N,i)}^x\} - \mu_N \right\|_2 \right]^2 \\ F_2(x) = -\sqrt{(\mu_D - \mu_N)^T \Sigma_N^{-1} (\mu_D - \mu_N)} \\ F_3(x) = -\sqrt{(\mu_N - \mu_D)^T \Sigma_D^{-1} (\mu_N - \mu_D)} \\ F_4(x) = SSIM \left\{ \frac{1}{n_N} \sum_{i=1}^{n_N} |W|_{(N,i)}^x, \frac{1}{n_D} \sum_{i=1}^{n_D} |W|_{(D,i)}^x \right\} \end{cases} \dots (3)$$

F₁(x), F₂(x), F₃(x)は SqueezeNet[5]の特徴ベクトル空間 Vを用いた関数であり、F₄(x)は健全・欠陥スカログラム の平均画像同士の SSIM である. ただし, ある健全・欠陥 打音波形を変換したスカログラム画像をそれぞれ|W|^x_(N i) と|W|^x_(D,i), Vにおける健全・欠陥特徴ベクトルのそれぞ れの平均をµ_Nとµ_D,健全・欠陥特徴ベクトルのそれぞれ の分散共分散行列を Σ_N と Σ_D とする.

制約条件を $2^{-2} \le x_1 \le 2^2$, $2^{-2} \le x_2 \le 2^2$,

 $500 \le x_3 \le f_n - 50$, $\frac{50}{f_n - 500} \le x_4 \le 1$ として最適化を行う. 初期個体数 1,024 で 128 世代目の目的関数空間における パレート解重心から最もユークリッド距離が近い個体の 従属変数空間のパラメータにより、スカログラムによる 打音の特徴抽出を行う. また, 変換後のスカログラムは, 時間方向が線形スケール,周波数方向が対数スケールで, 22x22のグレースケール画像とする.

深層生成モデルによる打音データの生成 3

表1にしたがって、データセットIにより、打音の健 全・欠陥の Fake データをそれぞれ生成する CGAN[6]と VAE[7]の作成を行う. それぞれ健全・欠陥各 100 の Real データをもとに 10000epoch まで訓練させる. その中の Real 健全・Fake 健全間の FID [8] が最低値となった epoch 数で, 健全・欠陥各 100 の Fake データ生成を行う.

データ拡張の精度検証方法 4.

特徴抽出方法の最適化と生成データによるデータ拡張 の精度を、図1のCNNと図2のLSTMのK-分割交差検証法 (k=4)による訓練・テストによって検証する.深層生成 モデルによるデータ生成を経て、新たに作成したデータ セットのうち, CNN と LSTM の訓練データとして用いるデ ータセットを表2に、テストデータについては表3に示 す. なお, 訓練データはデータセットI, テストデータは データセットIまたはSに属する.

表1. 生成モデルの詳細

		/ · · •	711.5	
エディ	訓練に用いる	訓練	生成する	
モナル	データセット内訳	epoch	Fake データ内訳	
CGAN	I(N:100, D:100)	9000	I(N:100, D:100)	
VAE	I(N:100, D:100)	5500	I(N:100, D:100)	

Improvement Accuracy on Impact-Echo Monitoring by Generation of Impact-Echo Using Deep Generative Model and Genetic Algorithm Masafumi Okamoto†, Hiroshi Shimbo‡, Shunsuke Sano‡, Toshiaki Mizobuchi‡, Junichiro Nojima§, Tomoko Ozeki†

5. 実験結果と今後の展望

特徴抽出の最適化前・後における,それぞれの訓練デ ータによる K-分割交差検証のテスト精度平均をそれぞれ 表4,表5に示す. 訓練・テストともに Real Only(I)で ある場合は精度が最適化前後でそれぞれ 0.9 以上となっ ている.一方で訓練データがデータセット I に属し,テ ストデータがデータセットSに属す場合は,全体的に0.5 から 0.6 前後の精度となっているが,最適化後では精度 が高くなる傾向がある.さらに,最適化後のデータ拡張 後では,精度が高い傾向があり,最適化のみでデータ拡 張を行っていない場合と比べても精度が高い傾向がある. したがって,異なるサイト間における判別において,特 徴抽出方法の最適化と生成モデルによるデータ拡張の有 効性が示された.

今後の展望として、特徴抽出方法の最適化においては Earth Mover's Distanceやcos類似度などの類似度指標 を導入することが考えられる.さらに、生成モデルによ るデータ拡張においてはFlow-basedモデルの導入により、 判別精度の向上を試みる.

謝辞

データ採取および提供にご協力いただいた名古屋大学 N2U-BRIDGE に感謝申し上げます.

参考文献

- [1] 新保 弘, 溝渕 利明, 野嶋 潤一郎, "打音探査への機械学習の適用に関する基礎的検討", コンクリート工学年次論文集, vol41, No.1, 2019
- [2] 名古屋大学, N2U-BRIDGE, 橋梁長寿命化推進室, Web ページ, https://www.n2u-bridge.jp
- [3] H. Shimbo, T. Mizobuchi, T. Ozeki, J. Nojima, S. Sano, M. Okamoto, and T. Shizuno, "Improved generalization capability in machine learning approaches for impact-echo test", submitted to SynerCrete' 23, 2023
- [4] K. Deb, and H. Jain, "An Evolutionary Many-Objective Optimization Algorithm Using Reference-point Based Non-dominated Sorting Approach, Part I: Solving Problems with Box Constraints", IEEE Transactions on Evolutionary Computation, 18(4), 2014
- [5] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, " SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size", https://arxiv.org/abs/1602.07360, 2016
- [6] M. Mirza, and S. Osindero, "Conditional Generative Adversarial Nets", https://arxiv.org/abs/1411.1784, 2014
- [7] D. P. Kingma, and M. Welling, "Auto-Encoding Variational Bayes", https://arxiv.org/abs/1312.6114, 2013
- [8] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, "GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium ", https://arxiv.org/abs/1706.08500, 2017

図 2. LSTM の構造

表 2. CNN と LSTM の訓練データとして用いるデータセット								
データセットタ		Real	Real		Fake			
フータセット名		F	D	F	D			
Real Only(I)		100	100	-	-			
Real + CGAN Fa	100	100	100	100				
Real + VAE Fake(I)		100	100	100	100			
表 3. CNN と LSTM のテストデータとして用いるデータセット								
データセットタ	Real		Fake					
ノ アビタド相		F	D	F	D			
Real Only(I)		52	52	-	-			
Real Only(S)		60	60	-	-			
表 4. テスト精度平均(特徴抽出最適化前)								
訓練データ	テストラ	ドータ	テスト精度平均		区均			
助用がインシン	/////	/	CNN	LSTM				
Real Only(I)	Real Or	nly(I)	1.000	0.	978			
Real Only(I)	Real Or	nly(S)	0.519	0.	496			
表 5. テスト精度平均(特徴抽出最適化後)								
訓練データ	テストデ		テスト精度平均					
前が末ノーン	/ ////		CNN	LS	STM			
Real Only(I)	Real Or	nly(I)	0.990	0.	964			
Real Only(I)	Real Or	nly(S)	0.581	0.	504			
Real	Real Or	nly(S)	0.615	0.	517			

Real Only(S)

0.623

0.515

2-474

+ CGAN Fake(I)

+ VAE Fake(I)

Real