4C-01

格子状マスクを利用した画像合成による検査精度の向上

前島 崇宏† 平間 毅†

茨城県産業技術イノベーションセンター

はじめに 1.

AI を活用した異物検査の精度を向上させるた めには大量の正常品画像と異物混入画像を集め る必要があるが,異物混入画像の収集やアノテ ーション作業には労力を要するという問題があ る. 筆者ら[1]は先行研究において, 配置や姿勢 を変えて正常品のみを撮影した画像と異物のみ を撮影した画像の合成画像を実際の異物混入画 像の代替として学習することで、画像収集やア ノテーションを自動化しつつ検査精度を向上さ せた.

本研究では,検査精度をさらに向上させるた め、格子状マスクを利用した画像合成手法を考 案した.また,正常品である複数の M6 ボルトの 中から異物を模擬した M8 ボルトを検出する課題 に対して本手法の有効性を評価した.

2. 提案手法

図1に示した画像全体を 6×6 の区画に分けた 格子を用いて、提案手法により異物混入画像を 合成するためのマスク画像の作成方法を示す.

合成後の画像全体に占める異物のみ画像の割 合を λ とした場合, 異物のみ画像を透過させる 区画の合計数は 36×λ となる. 画像中央に異物を 配置するため, 画像中央の赤色で示した区画か ら異物画像のみを透過させる区画をランダムに 選択する. 異物のみ画像を透過させる区画の合 計数が4を超える場合、黄色で示した区画から 同様に追加でランダムに選択する. 異物のみ画 像を透過させる区画の合計数が 16 を超える場合, 青色で示した区画から同様に追加でランダムに 選択する.

異物のみ画像を透過させる区画の数の端数分 は透過率を 0~1 の間とすることで異物のみ画像 の平均透過率がλとなるように調整する.

図 2 に λ=0.3 の場合のマスク画像の例を示す. 合成した画像(提案手法①)を実際の異物混入 画像に近づけるため,マスクに平滑化処理を行 い正常品と異物の境界をなじませた場合の影響 を評価した(提案手法②).また,画像中央に 異物を配置したことによる検査精度の影響を調 査するため,透過する区画をランダムに選択し た場合の影響も同様に評価した(提案手法③, 提案手法④).

評価方法 З.

学習には多クラス分類用のニューラルネット ワークのモデルである ImageNet データベースで 学習済みの ResNet18[2]を用いた.

合成方法は mixup[3], CutMix[4], 先行研究で 用いた,画像中心の透過率が 1,画像全体の平均 透過率を λ とした正規分布のマスクによる画像 合成および,提案手法①~④の7種類とし,λを 変更し学習を行った. mixup や CutMix では合成 後の画像のクラスは λ の値に応じて割り振られ るが,本研究では正常品のみ画像と異物のみ画 像を合成した場合,異物のみ画像の割合を λ と して画像を合成し、λの値に関わらず異物のクラ スとして学習した.

図 3 に合成画像を用いた学習・評価の流れを 示す. 正常品のみ画像 1,000 枚及び異物のみ画像 1.000 枚をランダムに組み合わせ、各エポックで 2.000 枚の合成画像を作成し学習した.

Improvement of inspection accuracy by image synthesis using grid masks

[†] Takahiro Maeshima. Takeshi Hirama

Industrial Technology Innovation Ibaraki Center Of Prefecture(ITIC)

画像合成方法の違いによる AUC の比較(n=3) 表 1

λ —	mixup			CutMix			先行研究			提案手法①			提案手法②			提案手法③			提案手法④		
	easy	normal	hard	easy	normal	hard	easy	normal	hard	easy	normal	hard	easy	normal	hard	easy	normal	hard	easy	normal	hard
0.1	0.840	0.757	0.651	0.932	0.835	0.674	0.997	0.987	0.945	1.000	0.995	0.969	1.000	0.994	0.970	0.813	0.755	0.707	0.720	0.690	0.589
0.2	0.814	0.752	0.690	0.997	0.961	0.844	1.000	0.994	0.959	1.000	0.995	0.965	1.000	0.995	0.965	0.776	0.797	0.783	0.768	0.814	0.764
0.3	0.790	0.741	0.666	1.000	0.988	0.914	1.000	0.994	0.949	1.000	0.995	0.948	1.000	0.994	0.942	0.908	0.918	0.890	0.987	0.962	0.887
0.4	0.900	0.826	0.717	1.000	0.986	0.898	1.000	0.993	0.927	1.000	0.988	0.890	1.000	0.991	0.908	0.998	0.981	0.933	0.999	0.979	0.921
0.5	0.996	0.947	0.816	1.000	0.978	0.836	1.000	0.985	0.854	1.000	0.979	0.842	1.000	0.984	0.854	1.000	0.983	0.918	1.000	0.984	0.918
0.6	0.971	0.801	0.582	0.999	0.970	0.783	0.999	0.939	0.736	1.000	0.973	0.807	1.000	0.980	0.818	0.999	0.969	0.846	0.999	0.973	0.867
0.7	0.940	0.716	0.533	0.999	0.948	0.726	0.992	0.866	0.632	0.999	0.959	0.758	1.000	0.967	0.770	0.999	0.931	0.756	0.998	0.947	0.775
0.8	0.944	0.726	0.552	0.998	0.899	0.670	0.983	0.833	0.622	0.999	0.914	0.683	0.999	0.937	0.718	0.996	0.896	0.695	0.997	0.914	0.711
0.9	0.972	0.789	0.575	0.991	0.857	0.640	0.986	0.852	0.637	0.995	0.890	0.666	0.996	0.903	0.671	0.994	0.876	0.662	0.993	0.873	0.660

400 エポック学習後のモデルを用いて正常品の み画像と実際の異物混入画像の ROC 曲線から求 めた AUC をそれぞれ求めることで検査精度の評 価を行った. 異物混入画像については異物の8 割以上が露出した easy, 異物の 5 割~8 割が露出 した normal, 異物の露出が 5 割以下の hard の 3 種類の画像に対してそれぞれ評価を行った.

学習画像(正常品のみ, 異物のみ各1,000枚)

(提案手法②(λ=0.3)で合成した場合)

図 3 合成画像を用いた学習・評価の流れ

4. 結果

画像合成を行わない従来手法と検査精度を比 較するため、正常品のみ画像と実際の異物混入 画像(easy)を用いて同様に学習・評価を行った 場合の AUC (easy, normal, hard) はそれぞれ 1.000, 0.985, 0.851 であった.

正常品のみ画像は画像合成を行う場合と同じ 画像を、実際の異物混入画像(easy)は評価用と は別に用意した画像をそれぞれ1,000枚用いた.

表 1 に画像合成方法の違いによる AUC を比較 した結果を示す.

AUC の最大値は判別の難易度によらず提案手 法①および提案手法②で最も大きくなり両者に 大きな差は見られなかった.提案手法① (\lambda=0.1) の場合の AUC (hard) は 0.969 と従来 手法の 0.851 や先行研究 (λ=0.2) の 0.959 を上回 る結果となった.一方,異物の透過位置をラン ダムに選択した場合(提案手法③,提案手法 ④)はAUCが小さくなる傾向が見られた.

評価用の異物混入画像では異物は画像の中央 に配置されている一方で, 異物の露出の仕方に はばらつきがある.提案手法①および提案手法 ②では評価用の異物混入画像に近い画像を合成 できたため検査精度が向上したと考えられる.

5. まとめ

自動で画像の収集やアノテーション作業が可 能な正常品のみ画像と異物のみ画像から、6×6の 格子状マスクを用いて異物のみ画像が占める割 合(λ)が 0.1 となるように合成した異物混入画 像で学習を行った.その結果,画像合成を行わ ない従来手法や先行研究と比較し検査精度を向 上させることができた.

参考文献

- [1] 前島 崇宏, 平間 毅: 画像合成を利用した異 物検査システムの開発,情報処理学会第84 回全国大会(2022)
- [2] He, et al.,"Deep residual learning for image recognition."In proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778,2016.2)
- [3] Hongyi Zhang, et al.,"mixup: Beyond Empirical Risk Minimization", ICLR2018
- [4] Sangdoo Yun, et al.,"CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features", ICCV 2019