1J-08

NVIDIA A100 GPUにおける電位・電界シミュレーションの性能評価

小西 秀策[†] 上嶋 明[‡]
岡山理科大学大学院工学研究科情報工学専攻[†] 岡山理科大学工学部情報工学科[‡]

1 はじめに

電位・電界シミュレーションは, 半導体の動作解 析や落雷の予測などの分野に応用されている. この シミュレーションは膨大な計算量を要することか ら, GPGPU(General Purpose Computing on GPUs) を用いた実装 [1] が提案されている. 本研究では, 松 原 (2015) による Poisson 方程式を用いた電位・電界 シミュレーションの Kepler 世代 GPU 用プログラム を NVIDIA A100 GPU に移植し, 旧世代の GPU と 比較してどの程度性能が向上するかについての評価 を行う.

2 電位・電界シミュレーション

2.1 概要

電位・電界シミュレーションの手法として, Poisson 方程式による電位の導出を行う. GPU への実装法に は, NVIDIA 社による GPGPU 向けの開発環境であ る CUDA を用いる.

2.2 Poisson 方程式

電磁気学の分野において, Poisson 方程式は静電ポ テンシャルの記述に用いられる. 与えられる電荷の 分布を ρ , 真空中の誘電率を $\epsilon_0 = 8.85 \times 10^{-12}$ [F/m] としたとき, 静電ポテンシャル ϕ は以下の Poisson 方程式を満たす.

$$\Delta \phi = -\frac{\rho}{\epsilon_0} \tag{1}$$

本研究では座標系を 2 次元とし, 電位は *x,y* の関数 で *z* 方向は考慮しないものとする. この場合, 式 (1) は以下のように表すことが可能である.

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = -\frac{\rho}{\epsilon_0} \tag{2}$$

2.3 計算手順

本シミュレーションのプログラムの流れを図1に 示す.まず,電位を格納する配列と電荷を格納する 配列を確保し,領域全体を0で初期化する.次に,電 荷密度の設定を行う.本プログラムにおいては,電 荷の数を10,密度を1.0×10⁻⁸[C/m²]とする.そし て,領域端を除く範囲で電位の計算を繰り返す.そ の際,前回計算した電位との残差を全領域に対して 求め,残差の最大値が収束判定係数以下となるまで 処理を繰り返す.最後に,電界を算出し電位ととも に出力する.

図1 シミュレーションの流れ

残差の計算および収束判定においては、各格子点 に対してリダクション演算を行う.本シミュレー ションプログラムでは、Warp Shuffle 命令を用い、 GPU の 32 スレッドの集合である Warp 内のレジス タを用いて並列リダクションを行う. Warp Shuffle 命令では、同じ Warp 内のスレッドのレジスタに直 接アクセスするため、シェアードメモリを経由する 場合よりも処理時間が短縮される.

2.4 NVIDIA A100 への移植

Kepler 世代向けのコードを NVIDIA A100 で動作 させるにあたって, いくつかの部分を Ampere 世代 の仕様に合わせた実装に変更する必要がある. 従来 のコードでは Warp Shuffle 命令として組み込み関数 の__shf1_xor() および__any() を使用していたが, Volta 世代以降においてこれらは非推奨となってい

Performance Evaluation of Potential and Electric Field Simulations on NVIDIA A100 GPUs

[†] Shusaku Konishi, Gradudte School of Engineering, Okayama University of Science

[‡] Akira Uejima, Faculty of Engineering, Okayama University of Science

る. Kepler 世代以前では Warp 内の 32 スレッドの演 算が同時に実行されることから暗黙の同期が保証さ れていたが, Volta 世代以降では Warp 内の各スレッ ドが個別にスケジューリングが可能であり, これら が全て同時に実行される保証はない. よって, Volta 世代より追加された Warp 同期用の新たな組み込み 関数を仕様するか, Cooperative Groups によってス レッドを明示的に同期する必要がある [2]. 本研究で は, 元のコードからの変更量が少なく済むことから warp 同期用の組み込み関数を使用する.

また, 推奨されてはいないものの, nvcc の-gencode arch=compute_60,code=sm_80 オプシ ョンを用いることにより, Kepler 世代以前の暗黙 の同期を用いたコードを Ampere 世代の GPU で実 行することが可能である.計算の内容によっては 暗黙同期を用いたほうが高速になる場合があるが, Ampere 世代で導入された機能がいくつか無効化さ れることが報告されている [3].

3 実験結果

3.1 実験環境

実験環境を表 1 に示す. GPU 上で並列 実行するプログラムを用いて実験を行っ た. A100 GPU 上では,従来のコードを nvcc の-gencode arch=compute_60,code=sm_80 オプシ ョンを用いてコンパイル・実行した場合 (Kepler モー ド) と, A100 向けに変更・コンパイルし実行した場 合 (Ampere モード) の 2 種類で比較を行った.

CPU	型式	Xeon E5-1650	EPYC 7413
	コア数	6	24
	ベースクロック	3.2GHz	$2.65 \mathrm{GHz}$
GPU	型式	Tesla K20	A100 x2
	アーキテクチャ	Kepler	Ampere
	CUDA コア数	2880	6912×2
	ベースクロック	$750 \mathrm{MHz}$	$1065 \mathrm{MHz}$
	VRAM	12 GB	$80\mathrm{GB} \times 2$
	ピーク性能 (FP32)	4.29TFLOPS	19.5 TFLOPS \times 2
OS		Linux 2.6	Linux 5.4
コンパイラ		gcc 4.4.7	gcc 9.4.0
		nvcc 7.5	nvcc 11.6

表1 計算機環境

3.2 実行時間

収束判定周期を 100 とし, A100 GPU にて Kepler モードと Ampere モードでそれぞれ実行した.図 2 に実行時間を示す.格子数 1920 において, K20 で 485.66 秒, A100 の Kepler モードで 75.90 秒,同 GPU の Ampere モードで 75.73 秒となり, A100 は K20 比 で約 6.4 倍の速度を達成することができた.一方で, 同じ A100 GPU 同士で従来のコードを Kepler モー ドで実行した場合と, 明示的な warp 同期を取り入れ た今回のコードを比較した場合では 1% 程度の差に とどまった.

4 おわりに

Kepler 世代 GPU 向け電位・電界シミュレーショ ンを NVIDIA A100 GPU を対象に移植し, 性能評価 を行った。K20 GPU と比較して飛躍的に性能が向 上した一方で, 暗黙の同期を明示的な同期に置き換 えることによる明確な性能向上は見られなかった. 今後の課題として, Ampere 世代で追加されたグロー バルメモリからシェアードメモリへの非同期コピー [4] を用いた場合の性能評価や, 複数 GPU 環境への 最適化などが挙げられる.

参考文献

- 松原翼,長尾栄作,上嶋明,尾崎亮,小畑正貴: GPGPUによる電位・電界シミュレーションの並 列化,情報処理学会第77回全国大会講演論文集, pp. 1-73-1-74, 2015.
- [2] 三木洋平: Volta 世代の GPU における重力ツ リーコードの性能評価, 情報処理学会研究報告, Vol. 2018-HPC-166, No. 6, pp. 1-9, 2018.
- [3] 三木洋平: NVIDIA A100 における重力ツリー コードの性能評価, 情報処理学会研究報告, Vol. 2021-HPC-180, No. 24, pp. 1-7, 2021.
- [4] Pramod Ramarao: CUDA 11 Features Revealed (2020), https://developer.nvidia.com/blog/ cuda-11-features-revealed/, (参照 2023-01-12).
- [5] CUDA Toolkit Documentation, https: //docs.nvidia.com/cuda/archive/11.6.2/, (参照 2023-01-12).