
The 28th Game Programming Workshop 2023

©2023 Information Processing Society of Japan — 66 —

Playing Board Games with a Deep Convolutional
Neural Network on the Motorola 6809 8-Bit

Microprocessor

Rémi Coulom1,a)

Abstract: While training deep-learning neural networks often requires considerable amounts of computing
power, inference is efficient, and can be run on small devices. Cell phones are a typical example, but they
are still rather powerful. The research presented in this paper takes the challenge to the extreme by running
a Go-playing convolutional neural network on the 6809 CPU, an 8-bit microprocessor launched by Motorola
in 1978. The software was implemented on a Thomson MO5 microcomputer, and reached a playing strength
on par with GNU Go.

Keywords: deep learning, quantization, neural networks

1. Introduction

The AlphaZero method [9], [10], [11] has become the most

successful approach for the development of board-game AI.

It is a reinforcement learning algorithm that can train a con-

volutional neural network to reach an extremely high level

from self-play, without human knowledge. The first ever

victory of a computer against a human Go master used this

approach, and it is the algorithm used by all current top Go

programs.

Training a neural network with this method is rather

expensive, but using the resulting neural network to play

games is efficient. During last year’s GPW, an implemen-

tation of a gomoku neural network in Factorio was pre-

sented [3].

The research presented in this paper aims to run such

a neural network with an even less powerful machine, the

Thomson MO5. The Thomson MO5 is a 8-bit microcom-

puter that was popular in France in the eighties. It was

used as an educational tool in French schools. Many French

kids had their first experience of a computer with that ma-

chine. It is equipped with a 1MHz Motorola 6809 CPU, a

320 × 200 display, 32 kb of RAM, and 16 kb of ROM that

includes the Microsoft BASIC interpreter.

Microprocessors of that time had no hardware support

for floating-point operations. The BASIC interpreter of the

MO5 provides floating-point capabilities, but calculations

are done in software with integer operations, and are very

slow. Figure 1 shows the output of a simple benchmark

experiment: 9.5 seconds for 1,000 multiplications. Such a

performance is not enough to run a Go-playing neural net-

work at a reasonable speed.

1 https://www.kayufu.com/
a) remi.coulom@gmail.com

Fig. 1 32-bit floating-point capabilities of the MO5

Although floating point operations are too slow, it is still

possible to run the neural network fast enough with quanti-

zation [5]. The high accuracy of 32-bit floating-point num-

bers is not at all necessary for correct calculations in a neural

network, and faster low-resolution integer operations can be

used instead. Unlike the 6502, its competitor that equipped

the Apple II, and the Commodore 64, the 6809 provides an

8-bit multiplication operation than runs in 11 clock cycles

only. Although it is slower than modern GPUs (see Table 1),

its MUL operation makes the 6809 a great processor for deep

learning.

The rest of this paper describes the approach for devel-

oping this MO5 software, and detailed experiment results.

These experiments lead to the production of an artificial Go

player with a strength similar to the strength of GNU Go on

the 9×9 board. But it is likely possible to make it stronger,

and potential for further significant improvements will be

discussed as well.

https://www.kayufu.com/

The 28th Game Programming Workshop 2023

©2023 Information Processing Society of Japan — 67 —

Machine Data Type Operations per second

MO5
float32 105
int8 38,461

NVIDIA H100 NVL
sparse tf32 1,979,000,000,000,000
sparse fp8 7,916,000,000,000,000
sparse int8 7,916,000,000,000,000

Table 1 MO5 computing power compared to a modern deep-
learning GPU. MO5 numbers are actual practical num-
ber of multiplications per second when performing a
convolution. NVIDIA numbers [7] are theoretical peak
performance. Non-sparse performance is not given on
that web site, but should be half of the sparse perfor-
mance.

2. Approach

The most fundamental operation in neural network calcu-

lations is the computation of matrix multiplications. Con-

volutions used for board games are a linear transformation

that can be expressed as a multiplication of a matrix of in-

put data by a matrix of neural-network weights. In order to

estimate how big a neural network can be run, it is neces-

sary to estimate the amount of time and memory required

to compute a matrix multiplication.

Table 2 shows a sketch of a dot product, a fundamen-

tal building block of the matrix multiplication. The result

of 8-bit multiplications are added into 16-bit accumulators.

Because of the risk of overflow when adding up many re-

sults of 8-bit multiplications, it will not be possible to use

the full 8-bit resolution. Modern 8-bit deep-learning accel-

erators usually use a 32-bit accumulator to avoid overflow,

but that would be very expensive on the 6809.

Code Cycles Bytes Pseudo-C
LDB -11, U 5 2 B = U[-11]

LDA #$07 2 2 A = 7

MUL 11 1 D = A * B

LEAX D, X 8 2 X = X + D

LDB -10, U 5 2
LDA #$02 2 2
MUL 11 1
LEAY D, Y 8 2

Table 2 Two multiplications in a 8-bit dot product. Weight val-
ues are hard-coded as constants into the code. The mul-
tiplication is unsigned, so two registers are used: X is
used for positive accumulation, and Y is used for nega-
tive accumulation. The final result of the dot product
is obtained as X - Y

With this approach to the dot product, an optimistic esti-

mate is 26 clock cycles per multiplications. Eight 3× 3 con-

volution layers with eight channels on a 9×9 board amount

to 8 × 8 × 8 × 3 × 3 × 9 × 9 multiplications. At 26 clock

cycles per multiplication, this is 9,704,448 clock cycles, so

about 10 seconds, which is a reasonable pace for a fun game

of Go.

The good performance of this dot product routine relies

on the hard-coding of weight constants into the code. At

7 bytes per multiplication, the total amount of necessary

code would be 8 × 8 × 8 × 3 × 3 × 7 = 32, 256 bytes. This

is too much for the MO5. But it is possible to solve this

problem by generating the code on the fly. A routine for

computing a convolution for one output and 8 inputs will

take 8 × 3 × 3 × 7 = 504 bytes, and will be called 9 × 9

times. The cost of writing the weights into the routine code

is small compared to the time it will take to run it. So we

can solve this code-size problem by just-in-time compiling

the dot product before using it 81 times.

3. Experiments Details

3.1 Training the Neural Network

The neural net uses 8 simple input features (Table 3) that

can be computed rapidly on the MO5. Outputs are policy

and final point ownership. It is a residual neural network

with 4 blocks of 2 8-channel convolutions, with ReLU activa-

tion. Batch normalization was used after every convolution.

Channel Description
0 Empty
1 My stone
2 My stone, 1 liberty
3 My stone, 2 liberties
4 Opponent stone
5 Opponent stone, 1 liberty
6 Opponent stone, 2 liberties
7 Opponent stone, 3 liberties

Table 3 Inputs

Channel Description
0 Policy
1 Ownership

Table 4 Outputs

The data used for training is made of 145,408 self-play

games of Crazy Stone, a strong AlphaZero-like Go program.

The neural network was trained with plain stochastic gradi-

ent descent with momentum of 0.9 on a PC with a RTX 2080

Ti GPU. Batch size was 2048. Leaning rate was warmed up

to 1.0 for 30 seconds, and decayed exponentially to 0.0002

for one hour. Figure 2 shows the plot of policy loss (cross-

entropy).

	1.9

	2

	2.1

	2.2

	2.3

	2.4

	2.5

	2.6

	1x106 	1x107 	1x108

training
validation

Fig. 2 policy loss as a function of training samples

The 28th Game Programming Workshop 2023

©2023 Information Processing Society of Japan — 68 —

Such a small network does not overfit at all with this big

a training set.

3.2 Estimation of Playing Strength

A 99-game match was played against GNU Go, witch Chi-

nese rules, and komi 6.5. GNU Go lost the match with a

score of 46-53. This result is not significant of superiority

over GNU Go, but indicates that the strength is similar.

3.3 Quantization

After training the neural network with floating-point num-

bers, post-training quantization was applied. It works by

measuring the maximum activation value for each input

channel over a large amount of test data. There is no value

truncation: inputs are scaled so as to not overflow this max-

imum. Each output channel is also re-scaled so that the

maximum absolute value of a weight to this output stays in

the range of the weight quantization.

Table 5 show the effect of quantization resolution on pol-

icy loss. 8-bit quantization for both activations and weights

produces a loss almost identical to floating point. But be-

cause using the full 8-bit resolution for both activations and

weights will cause 16-bit overflow in the sum accumulator,

a lower resolution has to be carefully selected.

activation bits weight bits policy loss

float float 1.946
8 8 *1.951
8 7 1.971
8 6 2.005
8 5 2.212
8 4 3.404
7 8 *1.954
7 7 1.972
7 6 2.008
7 5 2.209
6 8 *1.961
6 7 *1.981
6 6 *2.011
6 5 2.222
5 8 1.992
5 7 2.017
5 6 *2.049
4 8 2.121
4 7 2.146

Table 5 Policy loss for various post-training quantizations, mea-
sured over 10,000 test positions. Activations are un-
signed, and weights are signed. A star marks the best
choice for a given number of total bits.

The resolution was chosen by testing the range of values

taken by the accumulator over a large number of test po-

sitions. It turns out that a total resolution of 13 bits for

the weight-activation product is enough to prevent 16-bit

overflow. According to Table 5, the best choice in terms of

optimizing the policy loss is 6 bits for activations, and 7 bits

for weights.

3.4 Tools

The development and debugging of the Go program was

done with DCMOTO [2] (Figure 3). It has a debugger that

makes developing the program much more convenient than

the real machine: code can be run step by step, memory

and registers can be inspected, etc. The assembly code was

written on a PC, and assembled with asm6809 [1].

4. Conclusion

4.1 Summary

Writing a Go-playing program for the Thomson MO5 8-

bit microcomputer was a fun challenge. The resulting pro-

gram is 7kb in size, uses 12kb of RAM when running, and

plays a move at GNU Go strength on the 9x9 board in about

12 seconds.

4.2 Future Work

The current program could be improved with

quantization-aware training [5]. By applying quanti-

zation during training, the network can be made more

robust to weight rounding. This may allow stronger

quantization, which can be an opportunity for significant

performance improvements. For instance, by using 4-bit

activations and 5-bit weights, the unsigned product would

fit in 8 bits, and the very expensive LEAX D,X (2 bytes, 8

clock cycles) could be replaced by the much faster ABX (1

byte, 3 clock cycles).

Another significant improvement could be made by hard-

coding each multiplication into code. Multiplication by zero

would take no time and space at all. Multiplication by 1

is a plain addition. Multiplication by powers of 2 can be

computed with faster bit-shifting operations. Small weights

could use ABX instead of LEAX D,X. The main problem of

this approach is code size. Just-in-time compilation of the

convolution kernel would be less profitable, because the com-

piler would be much more complex. But the gain in code

size might be enough to fit the whole network code in the

MO5 RAM.

Sparsification [6] is yet another valuable approach to in-

ference optimization. By setting a large number of weights

to zero, the multiplication hard-coding approach described

previously would be even more profitable.

Although bit-shifting is not very cheap on the 6809, train-

ing weights to be powers of 2 might be another interesting

idea[4], [12]. Bit shifting also offers the interesting possi-

bility to shift right, that is to say multiply by non-integer

numbers. This can be a way to keep a higher resolution in

weights, while ensuring the the result of the multiplication

fits in 8 bits.

Finally, pushing quantization to the extreme with 1-bit

quantization [8] may be efficient on the 6809.

Most of these techniques can be applied to modern devices

as well. Tensor cores of modern NVIDIA GPU support low-

resolution and sparse matrix multiplication in hardware. It

seems that their usage is not yet very widespread among

competitive game AI programmers, but it will certainly be-

come more popular since quantization and sparsification can

bring very significant gains.

The 28th Game Programming Workshop 2023

©2023 Information Processing Society of Japan — 69 —

Fig. 3 Debugging the input tensor with DCMOTO

References

[1] Ciaran Anscomb. asm6809, 2023. https://www.6809.org.
uk/asm6809/.

[2] Daniel Coulom. DCMOTO, Émulateur de tous les ordi-
nateurs 8 bits Thomson, 2023. http://dcmoto.free.fr/
emulateur/index.html.

[3] Rémi Coulom. Deep-Learning Gomoku AI in Factorio, 2022.
https://www.youtube.com/watch?v=-Ng8E_s6Xgo.

[4] Mostafa Elhoushi, Farhan Shafiq, Ye Henry Tian, Joey Yiwei
Li, and Zihao Chen. Deepshift: Towards multiplication-less
neural networks. CoRR, abs/1905.13298, 2019.

[5] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao,
Michael W. Mahoney, and Kurt Keutzer. A survey of quanti-
zation methods for efficient neural network inference. CoRR,
abs/2103.13630, 2021.

[6] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden,
and Alexandra Peste. Sparsity in deep learning: Pruning and
growth for efficient inference and training in neural networks.
CoRR, abs/2102.00554, 2021.

[7] NVIDIA. NVIDIA H100 Tensor Core GPU, 2023. https:
//www.nvidia.com/en-us/data-center/h100/.

[8] Hadi Pouransari, Zhucheng Tu, and Oncel Tuzel. Least
squares binary quantization of neural networks. In CVPR
Workshop, 2020.

[9] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez,
Laurent Sifre, George van den Driessche, Julian Schrit-
twieser, Ioannis Antonoglou, Vedavyas Panneershelvam,
Marc Lanctot, Sander Dieleman, Dominik Grewe, John
Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lilli-
crap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel,
and Demis Hassabis. Mastering the game of Go with deep
neural networks and tree search. Nature, 529:484–489, Jan-
uary 2016.

[10] David Silver, Thomas Hubert, Julian Schrittwieser, Ioan-
nis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot,
Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy
Lillicrap, Karen Simonyan, and Demis Hassabis. A general
reinforcement learning algorithm that masters chess, shogi,
and go through self-play. Science, 362:1140–1144, December
2018.

[11] David Silver, Julian Schrittwieser, Karen Simonyan, Ioan-
nis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert,
Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen,
Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den
Driessche, Thore Graepel, and Demis Hassabis. Mastering
the game of Go without human knowledge. Nature, 550:354–
359, October 2017.

[12] Haoran You, Xiaohan Chen, Yongan Zhang, Chaojian Li,
Sicheng Li, Zihao Liu, Zhangyang Wang, and Yingyan
Lin. Shiftaddnet: A hardware-inspired deep network. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin, editors, Advances in Neural Information Processing
Systems, volume 33, pages 2771–2783. Curran Associates,
Inc., 2020.

https://www.6809.org.uk/asm6809/
https://www.6809.org.uk/asm6809/
http://dcmoto.free.fr/emulateur/index.html
http://dcmoto.free.fr/emulateur/index.html
https://www.youtube.com/watch?v=-Ng8E_s6Xgo
https://www.nvidia.com/en-us/data-center/h100/
https://www.nvidia.com/en-us/data-center/h100/

