FEFEN SR
IPSJ SIG Technical Report

W

Pipelined Round-Robin Broadcast Algorithm
in Homogeneous Clusters of SMP

Shan Axida T

Ta Quoc Viet §

2008 —ARC—177
2008 —HPC—114
20087376
Tsutomu Yoshinaga T

T University of Electro-Communications

Email:axida@sowa.is.uec.ac.jp, yosinaga@is.uec.ac.jp
I GLOBAL CYBERSOFT Inc.
Email:Ta.Quocviet@jp.yokogawa.com

This study proposes a novel broadcast algorithm for large-sized data over symmetric
multiprocessor (SMP) clusters. The algorithm is based on round-robin scheduling, and a
pipelined data scattering pattern. It can salvage all available communication resources of
systems at every point in time and is thereby capable of achieving approximately the
theoretical limit of performance. This implies that for a large data size on a network with
any even number of nodes, the broadcast execution time is approximately the time required
for a node to send data to another node. We compare the performance of the algorithm with
that of broadcast algorithms that are widely used in high-performance computing systems.

1. Introduction

Homogeneous symmetric multiprocessor (SMP)
clusters of workstations are widely used to perform
high-performance computing. For such clusters to
be more effective, communication must be carried
out as efficiently as possible.

Data broadcast is one of the most common
collective communication operations. It is also the
most essential task in parallel and distributed
processing. In distributed matrix manipulations
such as different algorithms for distributed matrix
multiplication {1, 2, 3] or a distributed solution of
linear equation systems [4], data broadcast over
processor rows and columns occupies almost all of
its communication time. Therefore, developing an
effective broadcasting algorithm can clearly
improve the overall performance.

The broadcast operation requires a message from
the root node (sender) to reach all other nodes in
the system at the end of the operation.

In this work, we define execution time as the
duration between the time when the root starts
sending and the time when the last machine
receives the entire message. The effectiveness of
broadcast algorithms depends on execution time. In
our consideration, a large amount 2 of data is to be
broadcast. If ¢ is the time that a pair of nodes
spends on sending and receiving 2, this should be
the theoretical limit of the broadcast operation. By
splitting the data into several fragments and then
distributing to the destinations them by a cyclic

schema, the root can complete its task in that

limited time ¢. At the same time, the destination
nodes exchange the fragments of data that they
have already received from the root by round-robin
scheduling; they can also finish their tasks at
almost the same point in time as the root. The aim
is to ensure that all nodes are busy at every point
in time and make use of all existing communication
links during the entire process. As a result, our
algorithm can reach the theoretical limit of
execution time 7.

The rest of the paper is organized as follows.
Section 2 briefly introduces related works. Section 3
defines the network model we analyze for our
algorithm. Section 4 introduces the round-robin
scheduling algorithm and its usage in global data
the
round-robin broadecast algorithm in detail. Section 6

exchange. Section 5 explains pipelined
presents our experimental results. Finally, section 7

provides with our conclusions and future work.

2. Related Work

We first consider the broadcast algorithm among
Anodes nodes. The root sends large data of size Dto
all other Anodes—1nodes.

One of the simplest broadcast algorithms is based
on a linear tree topology. In this method, node O
sends data to node 1, node 1 sends data to node 2,
and so on. Since the send and receive operations
repeat Anodes I times and each time the required
time is ¢, the total cost of this algorithm, execution
time, is (Nnodes 1) Xt, which is higher than that of
other proposed algorithms [14]. However, each
node (except for the root and last node) spends only

—187—

(32)
(32)

Figure 1. Binomial tree of order 4.

2 X t for

communication computation scheduling, it can

communication. By effective
perform computation tasks while others are in
communication phases. By this way, in spite of an
under-optimistic performance, linear tree broadcast
algorithm is still acceptable in these cases.
Moreover, the linear tree broadcast algorithm can
be easily improved by the pipeline approach.
Another

algorithm is based on binomial tree topology [11].

simple and well-known broadcast
Figure 1 shows the structure of a binomial tree of
order 4 as an example. In the first step, the root
sends the complete data to node Nnodes/2. Next, the
root and node Anodes/2 send the data to node
Nnodes/4 and node (3/4) X Anodes, respectively.
Then, the algorithm is continued recursively. The
total cost of the binomial tree broadcast algorithm
is Jog,(Nnodes) X t, which depends on the height of
the tree.

There is one more interesting and well-known
broadcast algorithm known as the van de Geijn
algorithm [11]. This algorithm consists of two
phases (Figure 2).

(1) Scatter phase: The message is divided and
scattered among all nodes by using a binomial tree.

(2) Allgather phase: The divided messages are
collected by the recursive doubling technique. Then,
the entire message becomes available in every
node.

The total cost of the van de Geijn algorithm is
2108 ppoqes * 512 (Nnodes-1) / Anodes+ D/b. The cost of the
scatter phase is (s+D/2b) + (s+D/4b) + (s+D/4b) +
(s+D/8b) + *** =108 oms * S + (Mnodes-1) /Nnodes + D/b.
The cost of the Allgather phase is the same as that
of the scatter phase.

J3m3€25

Y
BLyeo|v

Steps
<

Figure 2. van de Geijn Algorithm.

Table 1. Total costs of broadeast algorithms

Algorithms The total cost

Linear tree (P-1) * (s+D/b)
Linear tree (pipelined) (P-1) * s+D/b
Binomial tree Logp * (s+D/b)

Van de Geijn 2log, * s+2(P-1)/P* /b
RoundRobin (pipelined) (-1) * s+D/b

Table 1 shows the comparison of total cost of
various broadcast algorithms. P is the number of
nodes; s is the communication delay: b/ is the
network bandwidth and Dis the data size.

A large number of broadcast algorithms have
been proposed for different network topologies and
platforms {7, 8, 9, 10, 11]1. Unfortunately, they are

not applicable for our network model.

3. Network Model

Here we list the definitions of our network model.
1. The
consisting of point-to-point communication links

interconnection network is static,
among nodes.
2. The network is

connected. All the nodes can be treated equally in

homogeneous and fully

terms of the local performance, and the
communication rates between any pair of nodes are
equal. Furthermore, the communication rate
between a pair of nodes does not depend on the
number of currently active communications of other
pairs of nodes. In other words, the backbone
bandwidth is sufficiently wide for all the nodes of
the network to communicate at their individual full
rates.

3. Anode can send data to and/or receive data

—188—

Round 1

Round3

Round 13

Figure 3. Rotating algorithm for round-robin
scheduling with 14 participants

from only another single node at a time. This
assumption is termed one-port communication
model.

4. The network is full-duplex. The time required
for two nodes to exchange messages of an equal
length is equal to the time that they require while
one of them sends and the other receives. In other
words, a node can send and receive data to/from
another node with the same rate as that of sending
or receiving only. A majority of the modern switches
mostly satisfy this assumption.

5. The time spent to communicate (send and
receive, or exchange) a message between two nodes
depends on and is in proportion to the message size
only. By this assumption, we omit the preparation
time and latency, which in some cases occupy a
noticeable percentage of the overall communication
time. However, by employing sufficiently large
messages during communication, we can reduce

this percentage such that it can be omitted.

4. Round-Robin Scheduling

4.1 Round-Robin Scheduling Algorithm

Our proposal is based on round-robin scheduling,
which is widely employed in sport tournaments. In
a round-robin tournament, each participant plays
every other one and only one match. With Anodes
participants, in each round, there are Anodes/2
matches that can be played simultaneously. The
number of rounds is Nnodes-1, If Nnodes is odd, we
should add a virtual participant to the existing
participants. In this case, there will be Anodes
rounds with (Mnodes-1)/2 matches each. In each

round, there is one competitor that does nothing if

its partner by the schedule is the virtual
participant.

In our network model, a participant corresponds
to a computation node; a match between two
participants is the process of sending and receiving
data between the corresponding nodes. All of these
pairs can communicate at the same time by sending
and /or receiving data by employing their own
communication links. The amount of data that each
pair of nodes communicates is set to be equal, such
that these communication tasks require the same
period of time.

In our experiment, we apply the rotating
algorithm with 14 participants shown in Figure 3.
In each round, the two numbers in a column are the
indices of the two players of a match. For example,
in round 1, player 1 plays player 14, 2 plays 13, 3
plays 12, and so forth. In the next round, we fix the
competitor number 1 and rotate the others
clockwise and so on. We continue this action for

Nnodes—1I rounds.

4.2 Data Exchange

Suppose that the nodes of the network initially
store different pieces of same size of the complete
data. We term the process in which all the nodes
mutually broadcast their own pieces of data as
global data exchange. The round-robin scheduling
can be applied directly in this case. We consider an
even value of Miodes. In each round, the pairs of
nodes exchange data simultaneously. After Nnodes—-1
rounds, all the nodes possess the whole data. If the
size of the complete data is D, the size of each part
is J/Nnodes. Because the time spent on sending and
receiving Dis t, the time required for each round is
t/Nnodes. In addition, the number of rounds is
Nnodes=1. As a result, the time required for the
entire data exchange operation is
((Nnodes 1)/Nnodes) X t. This value is also the
theoretical limit of the execution time. In fact, it is
the time required by a node needs to receive its
missing data. The corresponding value for an odd
number of nodes can be found similarly. The
simplicity of the algorithm is due to the symmetric
feature of the operation. Each node stores the same
amount of data and plays the same role. However,
the broadcast operation is not as simple. It
comprises only a single data source for delivering

—189—

for (i=0;i<members-1;i++){

if my partner is the root then receive my
message in segment (K+1);

if my partner is the virtual node then do
nothing;

if my partner is another destination then

exchange message of segment K}
Figure 4. Pseudo code for loop iteration
for destination nodes.

for (i=0;i<members—1;i++) {

if my partner is the virtual node then do
nothing;

if my partner is a destination then send

message of segment K+1 to him:)}

Figure 5. Pseudo code for loop iteration
for the root

data to all the remaining nodes. In order to reach
the theoretical limit, we improve the algorithm by
adding a pipelined scattering phase. The next
section discusses the algorithm in further detail.

5. Pipelined Round-Robin Broadcast

5.1 Terminologies

In this section, we explain terminologies that are
used in succeeding sections.

1. Message. Within this work, a message is an
atomic unit of data during the communication. A
message should be sufficiently large so that its
communication costs are in proportion to its size.

2. Segment. A set of Nnodes-] messages forms a
segment. It is the object of the data exchange
iteration of our algorithm.

operation in an

Segments are indexed from 0 to Nsegs—1, and
the number of segments Nsegs can be found by

Nsegs=datasize/fragmentsize.
§.2 Proposed Algorithm

1. Initial Phase

In the initial phase, the root scatters segment 0
(containing Mnodes I messages) into the remaining
Nnodes 1 nodes. Due to the small size of a segment,
we can ignore the costs of this phase.

2. Main Loop

The main loop contains Nsegs-I iterations. In an
iteration, the nodes participate in a round-robin

Node 0 Nodel Node2 Node3

Segment 2 — —1
Initial Phase Segment 1 — 1
Segment 0 — g—_
Round1
Round 2
Round3

Figure 6. Initial phase and iteration 0.

tournament. In the A iteration, the root scatters
the messages of segment A7/ to the destinations,
while the destinations exchange the data of
segment K. After the completion of the iteration, all
the destinations should receive the entire segment
K and a message of segment K#/. The pseudo codes
for the K™ iteration for the destination and root
node are shown in Figure 4 and 5, respectively. The
number of players (wembers) of the tournament can
be found by adding a virtual player to Anodes if
MNnodes is odd:

members=(Nnodes$2==0) ? Nnodes : (Nnodes +1)

3. Final Phase

In the final phase, since the root has already
scattered all of its data, it does nothing. The
destinations exchange the messages of the last
segment. Similar to the initial phase, we can ignore
the costs of the final phase. As a result, the
performance of the algorithm can be evaluated by
determining the costs of just the main loop.

Figure 6 illustrates the initial phase and the
first iteration of the main loop with Anodes = 4 and
node O as the data source. In this figure, a cell
represents a memory space reserved for a message,
and the first three data segments are shown. The
colored and blank cells represent memory spaces
with and without corresponding data, respectively.
Initially, the three destination nodes have no data,
and their cells are blank. The arrow denotes a
sending and receiving operation. The bidirectional
arrow denotes a mutual data exchange operation.

Since AMnodes = 4, there are 3 rounds in each

—190—

same time (we term this type of communication as
data transfer). However, we can send and receive a
message at the same time between two nodes, and
suitable for the

round-robin broadcast algorithm (we term this type

this feature is pipelined
of communication as data exchange). As a result,
of data

approximately twice that of data exchange in

the execution time transfer is
communication experiments on our cluster.

Our network model cannot achieve the ideal
performance discussed earlier. The time it requires
to broadcast over a large number of nodes is
approximately twice that in the case of two nodes.
This is incident which is explained by the network
model. Not all the assumptions for the fully
connected network are satisfied by our
experimental cluster. The links between nodes are
switched and not static. When the number of nodes
is large, the costs of network switching may become
noticeable. Besides, the number of working links
may also affect the communication rate. Due to
these reasons, we are unable to reach the time limit

in the actual experiment.

7. Conclusion and future work

In an ideal homogeneous, fully connected, and
full-duplex network, the pipelined round-robin
broadcast algorithm can reach the theoretical
minimum limit of the execution time with a large
data size. With any large number of nodes of a
cluster, the time it spends for the entire broadecast
operation is exactly equal to the time required by a
pair of needs to transfer data from one node to
another. The round-robin scheduling algorithm
allows the nodes to communicate simultaneously
and thereby utilize all the available links at any
point in time. The look-ahead scattering technique
makes data available for exchanging between the
destinations nodes all the time.

There is
performance of the actual broadcast operation. For

scope for improvement in the
example, we may run the experiment using
different message sizes and obtain the best value
for it. Another option is to improve the broadcast
schedule in order to minimize the number of
thereby
preparation overheads. We intend to address above

switching operations, reducing the

mentioned issues in our research in the near
future.
Acknowledgments

This research is supported in part by the
Grants-in-Aid for Scientific Research of Japan
(JSPS)

Society for Promotion of Science

No.19500040.

References
[11 R. A van de Geijn and J. Watts. SUMMA: Scalable
Universal Matrix Multiplication Algorithm. LAPACK
Working Note 99, technical report, University of Tennessee,
April 1995.

[2] J. Choi. A Fast Scalable Universal Multiplication Algorithm
on Distributed-Memory Concurrent Computers. Proc.
IPPS’97,10.1063-7133, pp. 310-314, April 1997.

[3]1 J. ChoiJ. J. Dongarra, and D. W. Walker. PUMMA: Parallel
Universal Matrix Multiplication Algorithms on Distributed
Memory Concurrent Computers. Concurrency: Practice and
Experience, pp. 543-570, August 1993.

[4] T Q. Viet, T. Yoshinaga, B. A. Abderazek, and M. Sowa.
Construction of Hybrid MPI-OpenMP Solutions for SMP
Clusters, IPSJ Transactions on Advanced Computing
Systems, no. SIG_3(ACS_8), pp. 25-37, January 2005.

[S] MPICH Team. MPICH, a Portable MPI Implementation.
http://www-unix.mcs.anl.gov/mpi/mpich1

[6] W. Gropp, E. Lusk, and A. Skjellum. Using MPI Portable
Parallel Programming with the Message-Passing Interface,
The MIT Press Cambridge, Massachusetts London, England,
1994.

{7} H. Ko, S. Latifi, and S. Srimani. Near-Optimal Broadcast on
All-Port Wormhole-Routed Hypercubes Using Error
Correcting Codes. IEEE TPDS, no. ISSN: 1045-9219, pp.
247-260, March 2000.

[8] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert.
Pipelined Broadcast on Heterogeneous Platforms. 19%
international parallel & distributed processing symposium,
Denver, Colorado, April 2005,

[9] O. Beaumont, L. Marchal, and Y. Robert. Broadcast Tree for
Heterogeneous Platforms. IEEE Transactions on Parallel and
Distributed Systems, pp. 300-313, April 2005.

[10} T. Chiba, T. Endo, and S. Matsuoka. High-Performance MPI
Broadcast Algorithm for Grid Environments Utilizing
Multi-lane NICs. the Seventh IEEE International
Symposium on Cluster Computing and the Grid, no. ISBN:
0-7695-2833-3, pp. 487-494, May 2007.

[11] P. Patarasuk, A. Faraj, and X. Yuan, Pipelined Broadcast on
Ethernet Switched Cluster. the Twentieth [EEE International
Parallel and Distributed Processing Symposium (IPDPS),
Rhodes Island, Greece, April 2006.

[12] R. A. DeVenezia, Round Robin Tournament Scheduling.
http://www.devenezia.com/downloads/round-robin/index ht
ml.

[13) C. E. Leiserson. Fat-Trees: Universal Networks for
Hardware-Efficient Supercomputing. IEEE Transactions on
Computers, no. ISSN:0018-9340, pp. 892-901, October
1985.

[14] A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary. HPL- A
Portable Implementation of the High-Performance Linpack
Benchmark for Distributed Memory Computers.
http://www.netlib.org/benchmark/hpl/

—191—

Table 2. Theoretical broadcast time with

Some odd values of Nnodes
Nnodes Execution time (X&)
3 1.5
5 1.25
7 1.167

iteration. Node 0 in turn sends a message to the
destination. In a round, the destinations receive

a message from the source or exchange an existing
message with another destination depending on
whether or not its partner is the root. As shown in
the figure, after the first iteration, every
destination receives the entire data segment 0 and
a piece of data segment 1. Continuing with the next
iterations, it can fill the complete data without
idling.

5.3 Performance

e can determine the overall broadcast time by
determining execution time of any node. Let us
consider the root with different values of Nnodes. Its
execution time includes active and idle times.
Active time is the period of time when it actually
sends data to others. Idle time is the period of time
when it does nothing during the matches in which
its partner is the virtual player (if any).

1. Mnodes == 2

Obviously, this is the simple case of sending
and receiving data. The execution time is £ No
broadcast algorithm is required.

2. (Nnodes > 2) && (Nnodesk2 ==0)

There is no virtual player and the root always
has a partner to send its data. As a result, the
execution time is £ again, the theoretical limit.

3. (Nnodes > 2) && (Nnodesk2==1)

The active time of the root is ¢ In an iteration,
the root is idle in one match and active in Anodes 1
matches. Therefore, its idle time can be found by
t/(Nnodes 1) and the execution time can be found
by :

t +(t/(Nnodes 1))=(Nnodes/(Nnodes 1)) Xt.

It is interesting to note that the execution time
reduces with increasing number of nodes. Table 2
lists the broadcast time corresponding to some odd

values of Nnodes.

6. Experimental Results

We implement the algorithm on a PC cluster

" e "

12 - PP

m W e

8 //— g AT
o

Z /
2 Y
E 6 M in_Bcast
. 4 iy -®Binomial_Bcast
¥ -e-MPI_Bcast
2 Pipelined_Linear_Bcast

2 3 4 5 6 7 8 9 iﬂ 1.1 1‘2 13 14 15 16
Number of nodes

Figure 7. Broadcast execution time with

increaging number of nodes

25

- RoundRobin_Bcast
-®Binomial_Bcast

-¢Pipelined_tinear_Bcast
15

i’ - //
: y 4
A

4]

20 -

Time (S)

64M 256 M
Datasize (Bytes)

Figure 8. Broadcast execution time with

16K 64K 256 K im am M

increasing data size
connected via a gigabit switch by MPI
programming [13]. Our cluster includes 16

computation nodes with Intel Xeon 2.8 GHz
processors. We use Fedora Core and MPICH 1.2.7
in our experiment. As compiler, we use ICC (Intel C
compiler 9.0). The data size is 30 million double
precision numbers, which is equivalent to 1.92
Gbits. The message size is 500 Kbits. Figure 7 and
8 illustrate the execution time of the broadcast
algorithms we mentioned in this paper. The
performance of the linear broadcast that we omit
from the figure is the worst one.

The pipelined round-robin broadcast shows the
best performance in both the cases the constant
number of nodes but increasing size of data and the
case of constant size of data but increasing number
of nodes.

The pipelined linear broadcast can reach the
theoretical limit of the execution time with a large
amount of data [11]. Unfortunately, in our network
model (assumption 3), it is not possible to realize a
node that receives a message from the previous

node and sends a message to the next node at the

—192—

