WEKO3
アイテム
人種間の公平性を考慮した顔認証距離学習
https://ipsj.ixsq.nii.ac.jp/records/228811
https://ipsj.ixsq.nii.ac.jp/records/228811d0b1716e-7d1d-46e1-a488-9575b936afb6
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]()
2025年10月23日からダウンロード可能です。
|
Copyright (c) 2023 by the Information Processing Society of Japan
|
|
非会員:¥660, IPSJ:学会員:¥330, CSEC:会員:¥0, SPT:会員:¥0, DLIB:会員:¥0 |
Item type | Symposium(1) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2023-10-23 | |||||||||||||
タイトル | ||||||||||||||
タイトル | 人種間の公平性を考慮した顔認証距離学習 | |||||||||||||
タイトル | ||||||||||||||
言語 | en | |||||||||||||
タイトル | Metric Learning for Facial Recognition Considering Racial Fairness | |||||||||||||
言語 | ||||||||||||||
言語 | jpn | |||||||||||||
キーワード | ||||||||||||||
主題Scheme | Other | |||||||||||||
主題 | SNS,テキスト分類 | |||||||||||||
資源タイプ | ||||||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_5794 | |||||||||||||
資源タイプ | conference paper | |||||||||||||
著者所属 | ||||||||||||||
静岡大学 | ||||||||||||||
著者所属 | ||||||||||||||
東北大学 | ||||||||||||||
著者所属 | ||||||||||||||
静岡大学 | ||||||||||||||
著者所属 | ||||||||||||||
静岡大学 /理化学研究所 革新知能統合研究センター | ||||||||||||||
著者所属(英) | ||||||||||||||
en | ||||||||||||||
Shizuoka University | ||||||||||||||
著者所属(英) | ||||||||||||||
en | ||||||||||||||
Tohoku University | ||||||||||||||
著者所属(英) | ||||||||||||||
en | ||||||||||||||
Shizuoka University | ||||||||||||||
著者所属(英) | ||||||||||||||
en | ||||||||||||||
Shizuoka University / RIKEN AIP | ||||||||||||||
著者名 |
佐藤, 佑哉
× 佐藤, 佑哉
× 伊藤, 康一
× 西垣, 正勝
× 大木, 哲史
|
|||||||||||||
著者名(英) |
Yuya, Sato
× Yuya, Sato
× Koichi, Ito
× Masakatsu, Nishigaki
× Tetsushi, Ohki
|
|||||||||||||
論文抄録 | ||||||||||||||
内容記述タイプ | Other | |||||||||||||
内容記述 | 学習データの人種割合が偏った顔画像データセットで学習された顔認証モデルは,人種によって認証精度が異なってしまい,公平性の観点から問題になることがある.一方,顔認証モデルを学習する際に広く使用される大規模な顔画像データセットは,インターネット上で自動的に収集しており,人種割合が偏っていることが指摘されている.顔画像データセットの人種割合を統一しながら大規模な顔画像データセットを構築することは難しく,アンダーサンプリングによって人種割合を統一した場合は,学習データ数の減少により認証精度の低下につながる.そこで,本稿では顔画像データセットの人種割合が偏ったまま,顔認証モデルにおける公平性のバランスを調整可能な新たなモデル学習法を提案する.提案手法は,損失関数のパラメータを学習段階や公平性を考慮しながら動的に変化させることで,学習を安定させながら公平性を向上させる.さらに,高精度な人種の精度低下の許容度を決定する調和パラメータによって,公平性と認証精度の重要度の比重に応じて最適なバランスで学習を行うことができる. | |||||||||||||
論文抄録(英) | ||||||||||||||
内容記述タイプ | Other | |||||||||||||
内容記述 | Face recognition models trained on facial image datasets with a skewed racial distribution often display differing authentication accuracies depending on race, which can pose problems from a fairness standpoint. On the other hand, large-scale facial image datasets widely used for training face recognition models are automatically collected from the internet, and a racial imbalance in these datasets has been pointed out. Constructing a large-scale facial image dataset with a uniform racial distribution is challenging, and if the racial distribution is uniformed by undersampling, a reduction in the number of training data leads to a decrease in authentication accuracy. Therefore, this paper proposes a new model learning method that can adjust the balance of fairness in face recognition models, even with a skewed racial distribution in the facial image dataset. The proposed method dynamically changes the parameters of the loss function during the learning stage and in consideration of fairness, thereby stabilizing the learning process while improving fairness. Furthermore, by using a harmony parameter that determines the allowable degree of accuracy degradation for highly accurate races, it is possible to perform learning at an optimal balance according to the relative importance of fairness and authentication accuracy. |
|||||||||||||
書誌情報 |
コンピュータセキュリティシンポジウム2023論文集 p. 1459-1464, 発行日 2023-10-23 |
|||||||||||||
出版者 | ||||||||||||||
言語 | ja | |||||||||||||
出版者 | 情報処理学会 |