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Resource indexing is an effective technique for fast, successful search on
decentralized, unstructured peer-to-peer (P2P) network bs. An index is a summary
of resources owned by a node, and is distributed over the P2P network; any node
having the index can answer queries on the location of the resources. While more
thoroughly distributed indexes can make queries answered more quickly with a
small hop count, in large-scale networks, such a scheme may not be always effective
due to the large space requirement for keeping indexes at each node. We propose a
new index distribution technique that aims to minimize the hop count required for
each query by distributing indexes over the network as uniformly as possible, but
still in a space-efficient way. To do so, we compute the weight of each index that
estimates how many unique resources each index can locate. We give a large weight
to an index if it can locate many resources that others cannot. On the other hand, if a
resource can be located from an index, we decrease the weights of other indexes that
can also locate it. Each node selectively keeps the indexes with the largest weights,
thus increasing the chance of successful queries at the node, while keeping the space
requirement minimum. Simulation studies show that our distribution technique is
effective in decreasing hop counts and messages needed for resolving queries. It
decreases the average hop count by up to 44% with 75% less messages when used
with flooding based queries. Random-walk with our technique also decreases the
average hop count by up to 58% with 82% less messages. Furthermore, the query
success rate with a limited timeout condition also increases, approaching nearly to
100%.

aims to minimize the hop counts of queries by

I INTRODUCTION .. . . .
distributing indexes over the network as uniformly as

Recently, most of the popular peer-to-peer (P2P)
networks, e.g., FreeNet [16], Gnutella [14], and
FastTrack [15], are unstructured since they can scale up
very well along with a high demand of users. In such
networks, searching resources such as files is one of the
most common and important but complicated tasks. It
can take long time and generate a large number of
messages occupying the overall network; however, it
does not always succeed, especially when searching
rare resources in large-scale networks. Resource
indexing is one of the approaches to the problems {3,
6]. An index is a summary of resources owned by a
node, and is distributed over the P2P network; any node
having the index can answer queries on the location of
the resources on behalf of the resource owner itself.
However, while more thoroughly distributed indexes
can make queries answered more quickly with a small
hop count, in large-scale networks, such a scheme may
not be always effective due to the large space
requirement for keeping indexes at each node.

We propose a new index distribution technique that

possible. We use the Bloom filter [15] to compute the
index of a node, which can answer whether a resource
is available in the node, but does not always produce
correct results. Queries on the existence of a resource
succeed with probability; when it fails, we retry the
query to find different nodes.

To distribute indexes as uniformly as possible, and at
the same time in a space-efficient way, we compute the
weight of each index that estimates how many unique
resources each index can locate. We give a large weight
to an index if it can locate many resources that others
cannot. On the other hand, if a resource can be located
from an index, we decrease the weights of other
indexes that can also locate it. Each node selectively
keeps the indexes with the largest weights, thus
increasing the chance of successful queries at the node,
while keeping the space requirement minimum. This
proposed index distribution effectively augments with
existing query methods for unstructured P2P networks,
such flooding [9] and random walk [7], and decrease
their average hop counts.



Simulation studies show that our distribution
technique is effective in decreasing hop counts and
messages needed for resolving queries. It decreases the
average hop count by up to 44% with 75%-less
messages when used with flooding based queries.
Random walk with our technique also decrease the
average hop count by up to 58% with 82%-less
messages. Furthermore, the query success rate with a
limited timeout condition also increases, approaching
nearly to 100%.

11. INDEXING RESOURCES USING BLOOM FILTER

We use Bloom filter [15] to compute an index of a
node, which can answer whether a resource is available
in the node, but does not always produce correct results.
Bloom filter is a space-efficient data structure for a
probabilistic representation of a set of objects.
Generally, Bloom filter is used to test whether an
element is a member of a set. To create a Bloom filter
for a set of objects, we hash each object of the set with
k hash functions and set the bits corresponding to the
hashed results. To check whether an object, x, is a
member of the set, we hash x with the same & functions.
If all the corresponding bits of the hashed results are set,
x may be a member of the set. On the other hand, if
there is an unset bit in the corresponding bits, then x is
not a member of the set.

There is a chance that Bloom filter may return a false
positive, where all of the corresponding bits are set but
the object is not a member. Let m be the length of a
Bloom filter, n be the size of the set, and £ be the
number of hash functions used. Then, the probability of
false positive, f; can be calculated as follows [15].
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Thus, by setting m and k properly, we can keep the
probability of false positive relatively low. For example,
suppose the size of the set is 10000, if we set £ =3 and
m = 1Mbit, then the probability of false positive will be
less than 0.002%. In our work, a set of objects
corresponds to a set of locatable resources from a node
and we use this Bloom filter as the index of the node.
Note that the number of set bits correlates with the
number of the member objects (resources). Our index
distribution technique uses this number to estimate the
number of locatable resources.

III. PROPOSED INDEX DISTRIBUTION TECHNIQUE

When a node enters a network, it creates its own
index by computing the Bloom filter of its resources
and periodically distributes it to neighbor nodes (i.e.,
active exchange). In addition, when a node answers a
query using one of its indexes, it sends back not only

the resource location information but also the index
itself (i.e., passive exchange). Next time when the
requester node queries the same resource, it can resolve
it by itself. Receiving indexes from other nodes, it
stores them in its index table, and further distributes to
neighbor nodes. Figure 1 illustrates a simple example
network of nodes. Each circle represents a node and
each node has an index table of three entries (including
its own index, located in the top-most entry). The more
uniformly indexes are distributed over the network, the
smaller the average hop count would be. In addition,
typical search on unstructured networks uses a Time-To
Live (TTL) count as a timeout; thus, making more
indexes available within the distance of TTL can
increase the search success rate. However, the index
table size limits the number of indexes that each peer
can hold. Thus, the goal of index distribution is to
maximize the number of queries that each peer can
resolve within the given table size.

Index Tablea

01000110 3
11000010 15
00101000 24

Figure 1. For example network, node A hold indexes of other their
weight (the first index is its own index). Iteratively, node 4 sends
indexes to neighbor node according to our rules

To achieve the goal, we estimate how many new
resources an index can locate. We define the estimated
number as the weight of the index. Each node initially
set the weight of its own index by counting the number
of set bits in the index. Note that since we compute the
indexes by the Bloom filter, the number of set bits
correlates the number of resources that the filter
includes. For instance, the node A in Figure 1 sets the
weight as thee. For indexes distributed from other
nodes, we assign the weights using the new index rule.
We also use two more rules to adjust the weights---the
decay rule and integration rule. The rest of this section
describes the rules.

A.  New index rule

We use the new index rule to assign initial weights to
newly arrived indexes. To do so, the node estimates
how many new resources the new index can locate. In
other words, if the index has no information on
resources that cannot be located only by the existing
indexes, we give a minimum weight to the index.



Specifically, we count the number of set bits in the
index table with and without the new index. Let S be a
function that counts the number of set bits of a given bit
sequence, ¢, and @, be the set of indexes in the

index table with and without the new index. We
compute the weight as follows:

WZS(\:¢MW)_S(Y¢0M)

For example, in the sample network shown in Figure
1, node B sends its index, 00110001, to node A. Then,
we compute the weight of the index as follows:

W=S(\_/¢new)_S(\,/¢oId) :8_6=2

If the index table of node A4 is already full, we drop
the index that has the least weight, which is index
11000010 with weight 1.5 in this particular case.

B.  Decay rule

Since keeping rarely used indexes in an index table
wastes the index space, we eliminate those indexes by
decreasing their weights periodically. Specifically, let
O be the decay rate, which is a fixed constant between
0 and 1. For each index that has not been used for a

certain period, we compute the new weight, W;ew , as

follows:
Wnew = 6 ’ WCH}"’@VI’
Here, W, .. denotes the current weight of the index.

In our experiment, we set O to 0.9 and set a period to
three index-exchange iterations. For example, in Figure
1, if the third index has not been used for three
iterations, we adjust the weight to 2.2.

In some situations, where nodes always query for the
similar resources, the decay rate should be set to lower
such as 0.5 to increase the average performance of the
search because the frequently used indexes will be kept
in the index table.

C. Integration rule

This rule optimizes the number of distinctive
resources that nearby nodes can locate. Let # and m be
a pair of nodes that are directly connected. If both of
them have the same index, i, we reduce the weight of
the index in either of them. If # resolves a query using, i,
m can also resolve it with an additional hop. We trade
off a small number of additional hop counts with the
diversity of resources locatable using the indexes in
nearby nodes.

Specifically, each node distributes a summary of all
its indexes to surrounding neighbors by a random walk

method with k& Time-To-Live (TTL). We summarize
indexes by computing the OR of them. Note that since
we use the Bloom filter to compute indexes, the value
computed by the OR operation still holds the property
of the Bloom filter: The summary can return false
positive results, but no false negatives are possible.
Note also that this summarization produces data of the
same size as the original indexes. Thus, in our
simulation studies, we consider that the cost of sending
a summary is the same as that of a normal index.

When receiving an index summary, the node adjusts
the weights of its indexes as follows. For each of the
indexes in the table, it applies the AND-operation with
the index summary and counts the number of set bits.

Let I' be an index summary and ¢, be an index in the
table. We calculate the number as S(I'A@,) . This
number estimates how many resources both I' and ¢,

W, by

i

can resolve. We decrease the weight of @, ,

subtracting the number, i.c.:

inew i,current

1
gS(l"/\g/)i)

Here, &€ is the hop count between the node and the
summarized node. We divide the estimated number by
£ to accommodate the associated cost of additional
hop counts.

For example, in the sample network shown in Figure
1, node C periodically calculates its index summary and
distributes it by using a random walk method with &
TTL. Suppose that the index summary of node C is
00100111. If node A, which is two hops away from
node C, receives this index summary, it adjusts the
weights of all indexes as explained above. Specifically,
we update the weight of the second index as follows:

1

1
w, ~5SCAp)=24-7=19

2,new

=W,

2,current

Note that the weight of the second index is reduced
because it has the same set bit as the index summary of
node C.

1v. EVALUATION
A.  Simulation Setting

To evaluate the effectiveness of our distribution
technique, we evaluate the reduction of average hop
counts with indexes distributed by our technique. We
implemented an unstructured P2P network simulator
and two blind search techniques on top of it, namely
flooding and random walk. The simulated network
consists of 5,000 nodes with five maximum neighbors



(i.c., five out-degree) for each node. We randomly
assigned each node with 4K-bit index, which represents
the resources in that node, and used our method to
iteratively distribute the indexes over the network. We
also implemented another index distribution method
that randomly forwards indexes for comparison. We set
the index table size of each node to 10.

B.  Effects on Increasing the Number of Locatable
Resources.

To evaluate the effectiveness in increasing the
number of resources locatable with a small hop count,
we estimate the increase as follows. At each index-
exchange iteration, we choose a set of nodes in the
network randomly. For each node, we find the nearby
nodes within three hop counts. We compute the OR of
the indexes, and use the number of set bits as the
estimated number.
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Figure 2. The increase of number of locatable resources of the

proposed method compares to random distribution.

Figure 2 compares the estimated numbers between
our technique and the random distribution. The ideal
value shows the maximum number of set bits within a
three-hop-count area. We see that our technique can
increase the number of locatable resources significantly
compared to the random distribution. After 15 iterations,
the numbers nearly stabilized, though they did not reach
the ideal value; our technique still exceeded the other
by 34.5%.

9
8 -~ Proposed distribution
7 -4 Random distribution
6
£
g’ . -
8 4
2 3 \
2
1
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Iteration
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Figure 4. Hop count in random walk method.

C.  Effects on Decreasing Hop Counts

To evaluate the effectiveness of our distribution
technique in decreasing hop counts of queries, we
compare the average hop counts between our technique
and the random distribution. We use the flooding and
random walk methods to simulate queries.

Figure 3 and Figure 4 show the simulation results.
The x-coordinate corresponds to the number of
iterations, and the y-coordinate to the average hop
count. We see that in both query methods, our proposed
technique decreased the average hop counts
significantly compared to the initial state. When used
with the flooding queries, our technique decreased the
average hop count by 44%, which is 40% smaller than
that in the random distribution. Similarly, when used
with the random-walk queries, it decreased the average
hop count by 58%, which is 39% smaller than that in
the random distribution.
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Figure 5. Messages used in flooding method.
1200
\ e Proposed Distribution
1000
—>=—Random Distribution
800
@ \
@
- -
8 600
&
400 \+*
. \/\/\\/\\/\Q’

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
fterations

Figure 6. Messages used in random walk method.




Similarly, as in Figure 5 and Figure 6, the message
counts used in the search process also decreased
significantly with our index distribution, When used
with the flooding queries, the number of messages
decreased by 75% in 15 iterations, which is 32%
smaller than the random distribution. It also decreased
when used with the random-walk queries by 82% in 15
iterations, which is 41% smaller than the random
distribution.

D.  Effects on Success Rate of Random Walk Methods

Figure 7 shows that the success rate of random
queries also increases. After approximately 12
iterations, the query success rate almost reaches 100%
despite some resources is available in less than 5% of
all nodes, that because the indexes are distributed
effectively around the network.
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Figure 7. A query success rate of random walk method approaches to
100%.

V. RELATED WORK

A.  Search in Unstructured Peer-to-Peer Networks

Peer-to-peer networks can be categorized into
structured [16, 17,18], and unstructured networks
[12,13,14]. While structured networks are generally
more efficient in locating resources, they scale poorly
because of the need to establish and organize a
complete mapping between the index of resources and
the locations of the nodes. Moreover, in the centralized
network [16], it also has single point of failure problem.
On other hand, unstructured peer-to-peer networks are
more robust and can scale with the large number of
nodes.

Many resource discovery algorithms have been
proposed for search in unstructured decentralized P2P
networks [10, 11]. They can be categorized into blind
search [2, 6, 7] or informed search [4, 8]. Most of blind
search algorithms are based on flooding and random
walk. Many algorithms have been proposed to improve
the efficiency of these flooding and random walk
algorithms by adjusting parameters or restricting
flooding area. In general, the quality of query results of

blind search is still relatively low. For informed search,
each node uses hints to facilitate query forwarding.
Informed search can be further categorized into
proactive and reactive search. Proactive search
propagates hints before resources are queried. In
contrast, reactive search collects knowledge such as a
possible location of a resource from the past query
history. In the section three, we mentioned about how
indexes are distributed over the network, namely active
exchange and passive exchange. The active exchange is
comparable to the proactive search because index is a
form of hint that is also distributed over the network.
On the other hand, the passive condition is comparable
to the reactive search. Coliecting the indexes that had
been requested is like collecting knowledge. Although
the reactive search usually have more complicated
algorithm such as creating the routing table or applying
the learning rule to analyze a behavior of node in the
network [4,8], our active exchange is comparable to a
simple kind of reactive search. Any of the above-
mentioned search techniques can benefit from our index
distribution technique in decreasing query hop counts
with a limited index table space.

B, Managing the Overlay Networks in Unstructured Peer-
to-Peer Networks

In order to improve the performance of a search
algorithm in unstructured peer-to-peer networks, there
are several rescarch projects that proposed methods to
build or manage the overlay networks that are
appropriate for search algorithm. In [1], the authors
proposed a method using learning theory to adaptively
manage the overlay network to increase the search
efficiency and increase the resilient to targeted attacks
on high-degree nodes and maintain search efficiency.
The learning theory collects the knowledge from past
queries and use the knowledge to manage the over
networks. The authors of [6] proposed the probability
distribution to increase a success rate of queries for rare
items by distributing indexes over the network, which
is similar to our proposed distribution. However, our
proposed distribution technique also considers the
information in each index instead of distributing the
indexes randomly. As discussed in section 4, the
performance of queries is better when using our
proposed index distribution technique compare to
random distribution.

VL LIMITATIONS

A.  Local Optimization Problem

From Figure 2, our proposed technique cannot
increase the number of locatable resources to the ideal
value. One of the possible causes is because of a local
optimization problem. By distributing indexes
according to our proposed method, the estimation of



number of locatable resources may flat into some local
maximas. In order to solve this problem and reach the
global maxima (the ideal value), some rules in our
proposed method need to be adjusted and some addition
rules may have to be added into our algorithm. For
example, instead of using a fixed & TTL for Random
walk to distribute the indexes, we may vary k according
to a standard derivation. By occasionally given high
value to k, the index will be distributed to the further
nodes in the network. Thus, it might solve the local
optimization problem.

C. Bloom Filter Indexes

In our index distribution technique, we use Bloom
filter to create an index because Bloom filter has a
property that number of set bits can answer whether a
resource is available in the node, although it does not
always produce correct results. With this property, we
can estimate how many resources the index can locate
by counting the set bits of that index. In some situations,
the indexes cannot be created using Bloom Filter such
as when creating an index for resources with
continuous parameters such as CPU speed, memory, etc.
In those cases, we have to use another method to
estimate how many resources that the index can locate
instead of counting set bits.

VII. CONCLUSION

To improve the efficiency of search in decentralized
unstructured P2P networks, we proposed a new index
distribution technique that attempts to distribute
indexes uniformly over networks. We achieve this in a
space-efficient way by selectively keep indexes at each
node. We prioritize those indexes that can locate many
resources that others cannot. Our simulation studies
showed that our distribution technique is effective in
decreasing hop counts and messages needed for
resolving queries. We decreased the average hop count
by up to 44% with 75% less messages when used with
flooding based queries. Random-walk with our
technique also decreases the average hop count by up to
58% with 82% less messages.

In the future, we plan to adjust our proposed
distribution technique to further increase the number of
locatable resources by solving the above mentioned
local optimization problem. We also plan to adapt our
distribution technique to enhance the search efficiency
in more particulars networks such as networks with
power-law distribution.
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