ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング


インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 情報基礎とアクセス技術(IFAT)
  3. 2023
  4. 2023-IFAT-152

MultArtRec: A Multimodal Neural Topic Model for Integrating Image and Textual Features in Artwork Recommendation

https://ipsj.ixsq.nii.ac.jp/records/227777
https://ipsj.ixsq.nii.ac.jp/records/227777
59512adc-7d8e-4451-bdab-024845cedf84
名前 / ファイル ライセンス アクション
IPSJ-IFAT23152005.pdf IPSJ-IFAT23152005.pdf (1.1 MB)
 2025年9月14日からダウンロード可能です。
Copyright (c) 2023 by the Information Processing Society of Japan
非会員:¥660, IPSJ:学会員:¥330, IFAT:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2023-09-14
タイトル
タイトル MultArtRec: A Multimodal Neural Topic Model for Integrating Image and Textual Features in Artwork Recommendation
タイトル
言語 en
タイトル MultArtRec: A Multimodal Neural Topic Model for Integrating Image and Textual Features in Artwork Recommendation
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Graduate School of Information Science and Engineering, Ritsumeikan University
著者所属
College of Information Science and Engineering, Ritsumeikan University
著者所属
College of Information Science and Engineering, Ritsumeikan University
著者所属(英)
en
Graduate School of Information Science and Engineering, Ritsumeikan University
著者所属(英)
en
College of Information Science and Engineering, Ritsumeikan University
著者所属(英)
en
College of Information Science and Engineering, Ritsumeikan University
著者名 Jiayun, Wang

× Jiayun, Wang

Jiayun, Wang

Search repository
Akira, Maeda

× Akira, Maeda

Akira, Maeda

Search repository
Kyoji, Kawagoe

× Kyoji, Kawagoe

Kyoji, Kawagoe

Search repository
著者名(英) Jiayun, Wang

× Jiayun, Wang

en Jiayun, Wang

Search repository
Akira, Maeda

× Akira, Maeda

en Akira, Maeda

Search repository
Kyoji, Kawagoe

× Kyoji, Kawagoe

en Kyoji, Kawagoe

Search repository
論文抄録
内容記述タイプ Other
内容記述 Multimodal models have demonstrated remarkable success in the domains of image processing and natural language processing. Recently, their significance has also been acknowledged within recommendation systems. In many cases, the recommendation systems perform better when utilizing multimodal features to construct item embeddings, rather than utilizing individual text or image models. Consequently, research in this field has shifted its focus towards effectively combining multimodal features and accurately embedding items. Our study specifically concentrates on artwork recommendation. In artwork recommendation, the textual data such as titles and descriptions notably influence users' preferences. Our research approach involves constructing multimodal embeddings of artworks by integrating both images and titles as a fundamental step.
論文抄録(英)
内容記述タイプ Other
内容記述 Multimodal models have demonstrated remarkable success in the domains of image processing and natural language processing. Recently, their significance has also been acknowledged within recommendation systems. In many cases, the recommendation systems perform better when utilizing multimodal features to construct item embeddings, rather than utilizing individual text or image models. Consequently, research in this field has shifted its focus towards effectively combining multimodal features and accurately embedding items. Our study specifically concentrates on artwork recommendation. In artwork recommendation, the textual data such as titles and descriptions notably influence users' preferences. Our research approach involves constructing multimodal embeddings of artworks by integrating both images and titles as a fundamental step.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10114171
書誌情報 研究報告情報基礎とアクセス技術(IFAT)

巻 2023-IFAT-152, 号 5, p. 1-3, 発行日 2023-09-14
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8884
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 12:04:30.305056
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3